European Journal of Clinical Pharmacology

, Volume 24, Issue 4, pp 453–456 | Cite as

Delayed elimination of triamterene and its active metabolite in chronic renal failure

  • H. Knauf
  • W. Möhrke
  • E. Mutschler


The kinetics of triamterene and its active phase II metabolite were studied in 32 patients with various degrees of impaired renal function; the creatinine clearances ranged from 135 to 10 ml/min. The area under the plasma concentration-time curves (AUC) for triamterene were not influenced by kidney function, but the AUCs for the effective metabolite OH-TA-ester were significantly elevated in renal failure, indicating accumulation of the metabolite. Urinary recovery of triamterene and its metabolite over a 48 h collection period was significantly reduced in renal failure. This is considered to be due to delayed urinary excretion, corresponding to reduced renal clearance. The renal clearance of the native drug exceeded that of the metabolite, because of their different protein binding, 55% for triamterene and 91% for the metabolite. The latter is eliminated almost exclusively via tubular secretion and extrarenal elimination is less important. Administration of this antikaliuretic is therefore considered hazardous in patients with impaired kidney function.

Key words

triameteren renal failure hydroxytriamterene sulphate pharmacokinetics plasma protein binding urinary excretion renal tubular secretion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baba WI, Lant AF, Smith AJ, Townshend MM, Wilson GM (1968) Pharmacological effect in animals and normal human subjects of the diuretic amiloride hydrochloride (MK-870). Clin Pharmacol Ther 9: 318–327Google Scholar
  2. 2.
    Baba WI, Tudhope GR, Wilson GM (1962) Triamterene, a new diuretic drug. I. Studies in normal men and in adrenalectomized rats. Br Med J 2: 756–760Google Scholar
  3. 3.
    Dettli L (1976) Drug dosage in renal disease. Clin Pharmacokinet 1: 126–134Google Scholar
  4. 4.
    Grebian B, Geißler HE, Knauf H, Mutschler E, Schnippenkoetter J, Völger K-D, Wais U (1978) Zur Pharmakokinetik von Triamteren und seinen wirksamen Metaboliten bei eingeschränkter Nierenfunktion. Arzneim Forsch/Drug Res 28: 1420–1425Google Scholar
  5. 5.
    Grebian B, Geißler HE, Mutschler E (1976) Über die Bestimmung von Triamteren, Hydroxytriamteren und Hydroxytriamteren Schwefelsäureester in biologischem Material durch direkte Auswertung von Dünnschichtchromatogrammen. Arzneim Forsch/Drug Res 26: 2125–2127Google Scholar
  6. 6.
    Keller E, Hoppe-Seyler G, Mumm R, Schollmeyer P (1981) Influence of hepatic cirrhosis and end-stage renal disease on pharmacokinetics and pharmacodynamics of furosemide. Eur J Clin Pharmacol 20: 27–33Google Scholar
  7. 7.
    Knauf H, Schollmeyer P, Sobel M, Mutschler E (1983) Pharmacokinetics of xipamid in renal insufficiency. Eur J Clin Pharmacol (submitted for publication)Google Scholar
  8. 8.
    Knauf H, Mutschler E, Völger K-D, Wais U (1978) Pharmakologische Wirksamkeit von Phase-I- und Phase-II-Metaboliten des Triamteren. Arzneim Forsch/Drug Res 28: 1417–1420Google Scholar
  9. 9.
    Knauf H, Wais U, Albiez G, Lübcke R (1976) Kaliumsparer: “Einseitige” Diuretika, aber ideale Kombinationspartner. Therapiewoche 26: 5384–5387Google Scholar
  10. 10.
    Knauf H, Wais U, Lübcke R, Albiez G (1976) On the mechanism of action of triamterene: Effects on transport of Na+, K+ and H+/HCO3-ions. Eur J Clin Invest 6: 43–50Google Scholar
  11. 11.
    Lehmann K (1965) Trennung, Isolierung und Identifizierung von Stoffwechselprodukten des Triamteren. Arzneim Forsch/Drug Res 15: 812–816Google Scholar
  12. 12.
    Leilich G, Knauf H, Mutschler E, Völger K-D (1980) Ausscheidung von mono- und bivalenten Kationen im Rattenharn nach Applikation von Triamteren und seinem Phase-II-Metaboliten. Magnesium Bull 2: 8–13Google Scholar
  13. 13.
    Wiebelhaus VD, Weinstock J, Maas AR, Brenan FT, Sosnowski G, Larsen T (1965) The diuretic and natriuretic activity of triamterene and several related pteridines in the rat. J Pharmacol Exp Ther 149: 397–403Google Scholar
  14. 14.
    Wilson JD, Richmond DE, Simmonds HA, North JDK (1966) MK-870: a new potassium-sparing diuretic. N Z Med J 65: 505–511Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. Knauf
    • 1
  • W. Möhrke
    • 2
  • E. Mutschler
    • 2
  1. 1.Department of MedicineUniversity of FreiburgFreiburgFederal Republic of Germany
  2. 2.Pharmacological Institute, Department of Pharmacy and BiochemistryUniversity of FrankfurtFrankfurtFederal Republic of Germany

Personalised recommendations