Advertisement

Journal of Comparative Physiology A

, Volume 161, Issue 1, pp 67–84 | Cite as

The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray,Platyrhinoidis triseriata (Elasmobranchii)

  • H. Bleckmann
  • T. H. Bullock
  • J. M. Jørgensen
Article

Summary

Central lateral line pathways were mapped in the thornback ray,Platyrhinoidis triseriata, by analyzing depth profiles of averaged evoked potentials (AEPs), multiunit activity (MUA), and single unit recordings.
  1. 1.

    Neural activity evoked by contra- or ipsilateral posterior lateral line nerve (pLLN) shock is restricted to the tectum mesencephali, the dorsomedial nucleus (DMN) and anterior nucleus (AN) of the mesencephalic nuclear complex, the posterior central thalamic nucleus (PCT), the lateral tuberal nucleus of the hypothalamus, and the deep medial pallium of the telencephalon (Figs. 2, 3, 4, 6, 7).

     
  2. 2.

    Neural responses (AEPs and MUA) recorded in different lateral line areas differ with respect to shape, dynamic response properties, and/or latencies (Figs. 9, 10 and Table 1).

     
  3. 3.

    Ipsilaterally recorded mesencephalic and diencephalic AEPs are less pronounced and of longer latency than their contralateral counterpart (Fig. 9 and Table 1). In contrast, AEP recorded in the telencephalon show a weak ipsilateral preference.

     
  4. 4.

    If stimulated with a low amplitude water wave most DMN, AN, and tectal lateral line units respond in the frequency range 6.5 Hz to 200 Hz. Best frequencies (in terms of least displacement) are 75–150 Hz with a peak-to-peak water displacement of 0.04 μm sufficient to evoke a response in the most sensitive units (Fig. 11A, B, C).

     
  5. 5.

    DMN and AN lateral line units have small excitatory receptive fields (RFs). Anterior, middle, and posterior body surfaces map onto the rostral, middle, and posterior brain surfaces of the contralateral DMN (Fig. 12).

     
  6. 6.

    Some units recorded in the PCT are bimodal; they respond to a hydrodynamic flow field — generated with a ruler approaching the fish — only if the light is on and the eye facing the ruler is left uncovered (Fig. 13).

     

Keywords

Lateral Line Anterior Nucleus Tuberal Nucleus Posterior Lateral Line Lateral Line Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AN

anterior nucleus of the mesencephalic nuclear complex

AEP

averaged evoked potential

DMN

dorsomedial nucleus of the mesencephalic nuclear complex

LMN

lateral nucleus of the mesencephalic nuclear complex

LTN

lateraltuberal nucleus of the hypothalamus

MUA

multiunit activity

PCT

posterior central thalamic nucleus

pLLN

posterior lateral line nerve

PSTH

poststimulus time histogram

RF

receptive field

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronson LR (1963) The central nervous system of sharks and bony fishes with special reference to sensory and integrative mechanisms. In: Gilbert PW (ed) Sharks and survival. Heath, Boston, pp 165–241Google Scholar
  2. Backstrom K (1924) Contribution to the forebrain morphology in selachians. Acta Zool 5:123–240Google Scholar
  3. Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface-feeding fishAplocheilus lineatus. J Comp Physiol 140:163–172Google Scholar
  4. Bleckmann H, Schwartz E (1982) The functional significance of frequency modulation within a wave train for prey localization in the surface feeding fishAplocheilus lineatus (Cyprinodontidae). J Comp Physiol 145:331–339Google Scholar
  5. Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination of the surface-feeding fishAplocheilus lineatus — a prerequisite for prey localization? J Comp Physiol 143:485–490Google Scholar
  6. Bodznick DA, Northcutt RG (1980) Segregation of electro- and mechanoreceptive inputs to the elasmobranch medulla. Brain Res 195:313–322Google Scholar
  7. Bodznick DA, Northcutt RG (1984) An electrosensory area in the telencephalon of the little skate,Raja erinacea. Brain Res 298:117–124Google Scholar
  8. Boord RL, Northcutt RG (1982) Ascending lateral line pathways to the midbrain of the clearnose skateRaja eglanteria. J Comp Neurol 207:274–282Google Scholar
  9. Boord RL, Northcutt RG (1983) Diencephalic and mesencephalic electrosensory centers of the clearnose skate. Am Zool 23:927Google Scholar
  10. Bullock TH (1979) Processing of ampullary input in the brain: comparison of sensitivity and evoked responses among elasmobranchs and siluriform fishes. J Physiol (Paris) 75:297–407Google Scholar
  11. Bullock TH (1982) Electroreception. Annu Rev Neurosci 5:121–170Google Scholar
  12. Bullock TH, Corwin JT (1979) Acoustic evoked activity in the brain of sharks. J Comp Physiol 129:223–234Google Scholar
  13. Bullock TH, Heiligenberg W (1986) Electroreception. Wiley, New YorkGoogle Scholar
  14. Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46Google Scholar
  15. Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol 127:61–74Google Scholar
  16. Callens M, Vandenbusche E, Greenway Ph (1967) Convergence of retinal and lateral line stimulation on tectum opticum and cerebellar neurones. Arch Int Physiol Biochem 75:148–150Google Scholar
  17. Cohen DH, Duff TA, Ebbesson SOE (1973) Electrophysiological identification of a visual area in shark telencephalon. Science 182:492–494Google Scholar
  18. Compagno LJV (1977) Phyletic relationships of living sharks and rays. Am Zool 17:303–322Google Scholar
  19. Coombs S, Janssen J, Webb JF (1987) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory biology of aquatic animals. Springer, New York Berlin Heidelberg, pp 553–593Google Scholar
  20. Corwin JT, Northcutt RG (1982) Auditory centers in the elasmobranch brain: deoxyglucose localization and evoked potential recording. Brain Res 236:261–273Google Scholar
  21. Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38:51–106Google Scholar
  22. Dowben RM, Rose JE (1953) A metal-filled microelectrode. Science 118:22Google Scholar
  23. Duff TA, Ebbesson SOE (1973) Electrophysiological identification of a visual area in shark telencephalon. Science 182:492–494Google Scholar
  24. Ebbesson SO, Schröder DM (1971) Connections of the nurse shark telencephalon. Science 173:254–256Google Scholar
  25. Echteler SM(1985a) Organization of central auditory pathways in a teleost fish,Cyprinus carpio. J Comp Physiol A 156:267–280Google Scholar
  26. Echteler SM (1985b) Tonotopic organization in the midbrain of a teleost fish. Brain Res 338:387–391Google Scholar
  27. Elepfandt A (1985) Naturalistic conditioning reveals good learning in a frog (Xenopus laevis). Naturwissenschaften 72:492–493Google Scholar
  28. Elepfandt A, Seiler B, Aicher B (1985) Water wave frequency discrimination in the clawed frog,Xenopus laevis. J Comp Physiol A 157:255–261Google Scholar
  29. Finger TE (1980) Nonolfactory sensory pathway to the telencephalon in a teleost fish. Science 210:671–673Google Scholar
  30. Finger TE, Bullock TH (1982) Thalamic center for the lateral line system in the catfishIctalurus nebulosus: evoked potential evidence. J Neurobiol 13:39–47Google Scholar
  31. Finger TE, Tong SL (1984) Central organization of eighth nerve and mechanosensory lateral line system in the brainstem of ictalurid catfish. J Comp Neurol 229:129–151Google Scholar
  32. Görner P, Möller P, Webster W (1984) Lateral line input and stimulus localization in the African clawed toad. J Exp Biol 108:315–328Google Scholar
  33. Harris G, Bergeijk A van (1962) Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841Google Scholar
  34. Heiligenberg W, Bastian J (1984) The electric sense of weakly electric fish. Annu Rev Physiol 46:561–583Google Scholar
  35. Hoin-Radkovski I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fishPantodon buchholzi (Pantodontidae). Animal Behav 32:840–851Google Scholar
  36. Kalmijn A (1987a) Detection of weak electric fields. In: Atema J, Fay RR, Popper A, Tavolga W (eds) Sensory biology of aquatic animals. Springer, New York Berlin HeidelbergGoogle Scholar
  37. Kalmijn A (1987b) Hydrodynamic and acoustic field detection in elasmobranch and teleost fishes. In: Atema J, Fay RR, Popper A, Tavolga W (eds) Sensory biology of aquatic animals. Springer, New York Berlin HeidelbergGoogle Scholar
  38. Kappers CU Ariens, Huber G, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. Reprinted 1960. New York, Hafner, pp 18–45Google Scholar
  39. Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173:417–432Google Scholar
  40. Koester DM(1983) Central projections of the octavolateralis nerves of the clearnose skate,Raja eglanteria. J Comp Neurol 221:199–215Google Scholar
  41. Lowe DA (1986) Organization of lateral line and auditory areas in the midbrain ofXenopus laevis. J Comp Neurol 245:498–513Google Scholar
  42. Luiten PGM (1981a) Two visual pathways in the telencephalon of the nurse shark (Ginglymostoma cirratum). I. Retinal projections. J Comp Neurol 196:531–538Google Scholar
  43. Luiten PGM (1981b) Two visual pathways in the telencephalon of the nurse shark (Ginglymostoma cirratum). II. Ascending thalamo-telencephalic connections. J Comp Neurol 196:539–548Google Scholar
  44. McCormick CA, Braford MR (1987) Central connections of the octavolateralis system: evolutionary considerations. In: Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory biology of aquatic animals. Springer, New York Berlin Heidelberg, pp 733–756Google Scholar
  45. Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fishSarotherodon niloticus L. J Comp Physiol A 157:555–568Google Scholar
  46. Nederstigt LJA, Schellart NAM (1986) Acousticolateral processing in the torus semicircularis of the troutSalmo gairdneri. Pflügers Arch 406:151–157Google Scholar
  47. Parker GH (1905) The function of the lateral line organs in fishes. Bull US Bureau Fish 24:185–207Google Scholar
  48. Plassmann W (1982) Central projections of the octaval system in the thornback rayPlatyrhinoidis triseriata. Neurosci Lett 32:229–233Google Scholar
  49. Plassmann W (1983) Sensory modality interdependence in the octaval system of an elasmobranch. Exp Brain Res 50:283–292Google Scholar
  50. Plassmann W (1985) Coding of amplitude modulated tones in the central auditory system of catfish. Hearing Res 17:209–217Google Scholar
  51. Platt CJ, Bullock TH, Czéh G, Kovačević N, Konjević Dj, Gojković M (1974) Comparison of electroreceptor, mechanoreceptor, and optic evoked potentials in the brain of some rays and sharks. J Comp Physiol 95:323–355Google Scholar
  52. Scheich H, Maler L (1976) Laminar organization of the torus semicircularis related to the input from two types of electroreceptors. Exp Brain Res [Suppl] 1:565–567Google Scholar
  53. Schellart NAM (1983) Acousticolateral and visual processing and their interaction in the torus semicircularis of the trout,Salmo gairdneri. Neurosci Lett 42:39–44Google Scholar
  54. Schweitzer J (1983) The physiological and anatomical localization of two electroreceptive diencephalic nuclei in the thornback ray,Platyrhinoidis triseriata. J Comp Physiol 153:331–341Google Scholar
  55. Schweitzer J (1986) Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata): A single unit study. J Comp Physiol A 158:43–58Google Scholar
  56. Schweitzer J, Lowe D (1984) Mesencephalic and diencephalic cobalt-lysine injections in an elasmobranch: evidence for two parallel electrosensory pathways. Neurosci Lett 44:317–322Google Scholar
  57. Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Structure and functional correlations. Springer, Berlin Heidelberg New YorkGoogle Scholar
  58. Späth M, Schweickert W (1977) The effect of metacaine (MS-222) on the activity of the efferent and afferent nerves in the teleost lateral line system. Arch Pharmacol 297:9–16Google Scholar
  59. Teyke T (1985) Collision with and avoidance of obstacles by blind cave fishAnoptichthys jordani (Characidae). J Comp Physiol A 157:837–843Google Scholar
  60. Tong SL, Bullock TH (1982) The sensory functions of the cerebellum of the thornback ray,Platyrhinoidis triseriata. J Comp Physiol 148:399–410Google Scholar
  61. Veselkin VP, Kovačević N (1973) Non-olfactory telencephalic afferent projections in elasmobranch fishes. Zh Evol Biokhim Fiziol 9:585–592 (In Russian)Google Scholar
  62. Walkowiak W, Münz H (1985) The significance of water surface waves in the communication of fire-bellied toads. Naturwissenschaften 72:49Google Scholar
  63. Weissert R, Campenhausen C von (1981) Discrimination between stationary objects by the blind cave fishAnoptichthys jordani (Characidae). J Comp Physiol 143:375–381Google Scholar
  64. Will U, Luhede G, Görner P (1985a) The area octavo-lateralis inXenopus laevis. I. The primary afferent projections. Cell Tissue Res 239:147–161Google Scholar
  65. Will U, Luhede G, Görner P (1985b) The area octavo-lateralis inXenopus laevis. II. Second order projections and cytoarchitecture. Cell Tissue Res 239:163–175Google Scholar
  66. Zittlau KE, Claas B, Münz H, Görner P (1985) Multisensory interaction in the torus semicircularis of the clawed toadXenopus laevis. Neurosci Lett 60:77–81Google Scholar
  67. Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toadXenopus laevis Daudin. J Comp Physiol A 158:469–477Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • H. Bleckmann
    • 1
  • T. H. Bullock
    • 1
  • J. M. Jørgensen
    • 1
  1. 1.Neurobiology Unit, Scripps Institution of Oceanography, Department of Neurosciences, School of MedicineUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations