Journal of Applied Electrochemistry

, Volume 2, Issue 2, pp 123–136 | Cite as

Zinc passivation and the effect of mass transfer in flowing electrolyte

  • E. D. Farmer
  • A. H. Webb


Passivation times,tp, of a zinc sheet anode have been found to vary from 2 min to 2 h over the experimental range of electrolyte velocities (0.075 to 0.20 ms−1), current densities (3,160 to 1,675 A m−2) and electrolyte temperature (298 to 333 K). Fortp longer than about 40 min there was a change in the nature of the experimental dependence oftp on the electrolyte flow rate and the current density.

A satisfactory theoretical model of the dissolving zinc anode involving the diffusion of the soluble species through a growing porous solid layer on the electrode surface and through the electrolyte diffusion layer has been formulated to explain the dependence oftp on the experimental variables.


Zinc Mass Transfer Electrode Surface Diffusion Layer Passivation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Gerischer,Z. Physik. Chem.,43 (1953) 845.Google Scholar
  2. [2]
    T. P. Dirkse,J. Electrochem. Soc.,102 (1955) 497.Google Scholar
  3. [3]
    J. P. G. Farr and N. A. Hampson,Trans. Faraday Soc.,62 (1966) 3493.Google Scholar
  4. [4]
    J. P. G. Farr and N. A. Hampson,J. Electroanal. Chem.,13 (1967) 433.Google Scholar
  5. [5]
    T. I. Popova, V. S. Bagotskii and B. N. Kabanov,Russ. J. Phys. Chem.,36 (1962) 766.Google Scholar
  6. [6]
    N. A. Hampson, P. E. Shaw and R. Taylor,Br. Corr. J.,4 (1969) 207.Google Scholar
  7. [7]
    M. Eisenberg, H. F. Bauman and D. M. Brettner,J. Electrochem. Soc.,108 (1961) 909.Google Scholar
  8. [8]
    H. Bartelt and R. Landsberg,Z. Physik. Chem.,222 (1962) 217.Google Scholar
  9. [9]
    N. A. Hampson and M. J. Tarbox,J. Electrochem. Soc.,110 (1963) 95.Google Scholar
  10. [10]
    N. A. Hampson, M. J. Tarbox, J. T. Lilley and J. P. G. Farr,Electrochem. Tech.,2 (1964) 309.Google Scholar
  11. [11]
    H. J. S. Sand,Phil. Mag.,1 (1901) 45.Google Scholar
  12. [12]
    K. Huber,J. Electrochem. Soc.,100 (1953) 376.Google Scholar
  13. [13]
    M. N. Hull, J. E. Ellison and J. E. Toni,J. Electrochem. Soc.,117 (1970) 192.Google Scholar
  14. [14]
    A. Langer and E. A. Pantier,J. Electrochem. Soc.,115 (1968) 990.Google Scholar
  15. [15]
    R. W. Powers and M. W. Breiter,J. Electrochem. Soc.,116 (1969) 719.Google Scholar
  16. [16]
    I. Sanghi and M. Fleischmann,Electrochim. Acta,1 (1959) 161.Google Scholar
  17. [17]
    G. S. Vozdvizhenskii and E. D. Kochman,Russ. J. Phys. Chem.,39 (1965) 347.Google Scholar
  18. [18]
    e.g. P. R. Shipps,Proc. Ann. Power Sources Conf. (1966) 86.Google Scholar
  19. [19]
    M. J. Brook and N. A. Hampson,Electrochim. Acta,15 (1970) 1749.Google Scholar
  20. [20]
    F. Mansfeld and S. Gilman,J. Electrochem. Soc.,117 (1970) 588.Google Scholar
  21. [21]
    V. G. Levich, ‘Physiochemical Hydrodynamics’ (1962) Prentice-Hall (New York).Google Scholar
  22. [22]
    T. P. Dirkse,J. Electrochem. Soc.,106 (1959) 154.Google Scholar
  23. [23]
    R. W. Powers,J. Electrochem. Soc.,116 (1969) 1652.Google Scholar
  24. [24]
    N. A. Hampson, Private Communication (1969).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1972

Authors and Affiliations

  • E. D. Farmer
    • 1
  • A. H. Webb
    • 1
  1. 1.Research and Development DepartmentCentral Electricity Generating BoardLeatherheadUK

Personalised recommendations