Mechanics of Composite Materials

, Volume 22, Issue 3, pp 369–374 | Cite as

Buckling of shell-like products made of fibrous composites with a view to their viscoelastic properties

  • V. D. Potapov
  • A. V. Motavkin
  • M. Yu. Zharinov


Viscoelastic Property Fibrous Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. I. Al'perin, N.V. Korol'kov, A. V. Motavkin, S. L. Roginskii, and V. A. Teleshov, Structural Glass-Fiber Reinforced Plastics [in Russian], Moscow (1979).Google Scholar
  2. 2.
    A. V. Motavkin, A. R. Bel'nik, V. V. Antipov, and T. N. Belyaeva, “Buckling of parts made of glass-fiber reinforced plastic molding materials with chaotic distribution of fibers,” in: The Technology of Articles Made of Polyester Premixes [in Russian], Moscow (1975), pp. 66–75.Google Scholar
  3. 3.
    D. Schauf, “Zusammenhänge zwischen Schwindung, Orientierung, Toleranzen und Verzug bie der Herstellung von Präzisionsformteilen,” Plast. Kautschuk, No. 11, 650–655 (1978).Google Scholar
  4. 4.
    G. Kaliske, M. Erber, and F. Meyer, “Grundsätzliches zur Problematik der Massanderungen bei glasfaserverstärkten Thermoplasten von Kurzfasertyp,” Plast. Kautschuk, No. 11, 647–650 (1978).Google Scholar
  5. 5.
    A. V. Motavkin, V. Ya. Ozols, and A. M. Krivatkin, “Analysis and calculation of buckling of standardized glass-fiber reinforced plastic articles,” Plasticheskie Massy, No. 6, 31–33 (1983).Google Scholar
  6. 6.
    A. V. Motavkin, A. A. Konoplev, V. A. Teleshov, I. N. Frolov, and V. Z. Kompaniets, “The state of stress and strain of articles with complex geometric shape made of cast and molded composite materials,” Mekh. Kompozitn. Mater., No. 1, 159–162 (1985).Google Scholar
  7. 7.
    A. V. Aleksandrov, B. Ya. Lashchenikov, and N. N. Shaposhnikov, Structural Mechanics. Thin-Walled Spatial Systems [in Russian], Moscow (1983).Google Scholar
  8. 8.
    S. K. Godunov, “The numerical solution of boundary-value problems for systems of ordinary differential equations,” in: Achievements of the Mathematical Sciences [in Russian], Vol. 16, Issue 399, Moscow (1960), pp. 171–174.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. D. Potapov
    • 1
    • 2
  • A. V. Motavkin
    • 1
    • 2
  • M. Yu. Zharinov
    • 1
    • 2
  1. 1.Moscow Institute of Railroad EngineersUSSR
  2. 2.Scientific and Production Association “Norplast”Moscow

Personalised recommendations