Oxidation of Metals

, Volume 11, Issue 6, pp 365–381 | Cite as

Oxidation of cobalt at high temperature

  • S. Mrowec
  • K. Przybylski
Article

Abstract

Precise values of parabolic rate constants of cobalt oxidation have been determined over a wide range of temperature (950–1300°C) and oxygen pressure (6.58× 10−4−0.658 atm). The dependence of the calculated values of parabolic rate constants k″p on oxygen pressure and temperature can be described by the following empirical equation:
$$k''_p = const. \cdot {\text{p}}_{O_2 }^{{\text{1/n}}} \cdot exp ( - {\text{E}}_{\text{k}} /RT)$$
The exponent 1/n decreases with an increase in temperature from 1/3.40 at 950°C to 1/3.96 at 1300°C, whereas the activation energy Ek decreases with an increase in the oxygen pressure from 41.7 to 38.1 kcal/mole.

Key words

cobalt oxidation kinetics parabolic rate constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys, 2nd ed. (Academic Press, New York, 1962).Google Scholar
  2. 2.
    J. Bénard, ed.,Oxydation des Metaux, Tome II (Gauthier-Villars, Paris, 1964), pp. 126–132.Google Scholar
  3. 3.
    K. Hauffe,Oxidation of Metals (Plenum Press, New York, 1965).Google Scholar
  4. 4.
    P. Kofstad,High Temperature Oxidation of Metals (Wiley, New York, 1966), pp. 122, 127.Google Scholar
  5. 5.
    P. Kofstad,Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley Interscience, New York, 1972), pp. 238–246.Google Scholar
  6. 6.
    R. E. Carter and F. D. Richardson,J. Met. 7, 336 (1955).Google Scholar
  7. 7.
    D. W. Bridges, J. P. Bauer, and W. M. Fassell, Jr.,J. Electrochem. Soc. 103, 614 (1956).Google Scholar
  8. 8.
    F. S. Pettit and J. B. Wagner, Jr.,Acta Metall. 12(1), 41 (1964).Google Scholar
  9. 9.
    S. Mrowec, T. Walec, and T. Werber,Corros. Sci. 6(6), 287 (1966).Google Scholar
  10. 10.
    J. Krüger, A. Melin, and H. Winterhager,Cobalt 33, 176 (1966).Google Scholar
  11. 11.
    J. A. Snide, J. R. Myers, and R. K. Saxer,Cobalt 36, 157 (1967).Google Scholar
  12. 12.
    P. K. Kofstad and A. Z. Hed, Proc. 4th Int. Congr. Metallic Corros., Amsterdam, September 7–14, 1969, (National Association of Corrosion Engineers, 1972), pp. 196–211.Google Scholar
  13. 13.
    F. R. Billman,J. Electrochem. Soc. 119, 1198 (1972).Google Scholar
  14. 14.
    S. Mrowec, M. Lason, E. Fryt, K. Przybylski, and A. Ciembroniewicz,J. Therm. Anal. 6, 193 (1974).Google Scholar
  15. 15.
    S. Mrowec and A. Stokłosa,Werkst. Korros. 21, 934 (1970).Google Scholar
  16. 16.
    J. Romański,Corros. Sci. 8, 67 (1968).Google Scholar
  17. 17.
    J. Romański,Corros. Sci. 8, 89 (1968).Google Scholar
  18. 18.
    A. Brückman, Société de chimie physique 25 Réunion Internationale, Cinétique des réactions dans les systémes chimiques hétérogenes, Dijon, 8–12 Juillet, 1974.Google Scholar
  19. 19.
    S. Mrowec and A. Stołosa,Oxid. Met. 8, 379 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • S. Mrowec
    • 1
  • K. Przybylski
    • 1
  1. 1.Institute of Materials ScienceAcademy of Mining and MetallurgyKrakówPoland

Personalised recommendations