Journal of comparative physiology

, Volume 93, Issue 4, pp 337–346 | Cite as

Spectral sensitivity of monopolar cells in the bee lamina

  • Randolf Menzel


  1. 1.

    The intracellularly recorded response of the lamina monopolar cells (MC's) to retinal illumination is a triphasic hyperpolarisation (Fig. 1). Recordings stable enough to allow measurement of a whole series of intensity and spectral runs were obtained from 9 cells.

  2. 2.

    The gain between retinal input and MC output is calculated by comparison of normalised response/log intensity functions, and is found to be about 7 over most of the MC's dynamic range (Fig. 2, 3).

  3. 3.

    The spectral sensitivity of MC's has its maximum at 482 nm and a broad shoulder around 550 nm. Sensitivity is low (20%) in the UV. However, in some MC's there is an increase in sensitivity to the shortest wavelengths tested (316 nm). One MC (No. 7) responded to UV wavelengths at only high intensities and then with a depolarising potential.

  4. 4.

    The interpretation of the MC's spectral sensitivity function is that blue and green receptors supply excitatory inputs to the MC with about equal weighting. UV receptors may supply inhibitory inputs with less weight than those from the blue and green receptors.

  5. 5.

    These spectral sensitivity functions of dark adapted MC's are calculated for an intensity range which is near the threshold of the receptors. For an intensity range which lies around 50% response of the receptors the spectral sensitivity function of the MC's is flat between 300 and 600 nm (if there is no or only small inhibition by the UV receptors) or between 400 and 600 (if the UV inhibition increases strongly with intensity). It is discussed that the spectral response in light adapted MC's may be very different from those of dark adapted MC's.



Short Wavelength Equal Weighting Spectral Response Intensity Function Spectral Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnett, D. W.: Spatial and temporal integration properties of units in the first optic ganglion of Dipterans. J. Neurophysiol.35, 429–144 (1972)Google Scholar
  2. Autrum, H., Zettler, F., Järvilehto, M.: Postsynaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowflyCalliphora. Z. vergl. Physiol.70, 414–424 (1970)Google Scholar
  3. Autrum, H., Zwehl, V. v.: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol.48, 357–384 (1964)Google Scholar
  4. Cajal, R. S., Sánchez, D.: Contribución al conocimiento de los centros nerviosos de los insectos. Trab. Lab. Invest. Biol. Univ. Madrid13, 1–164 (1951)Google Scholar
  5. Daumer, K.: Reizmetrische Untersuchungen des Farbensehens der Biene. Z. vergl. Physiol.38, 413–478 (1956)Google Scholar
  6. Frisch, K. v.: Der Farbensinn und Formensinn der Biene. Zool. Jb. Abt. Physiol.37, 1–238 (1914)Google Scholar
  7. Gribakin, F. G.: Types of photoreceptor cells in the compound eye of the worker honey bee relative to their spectral sensitivity. Cytologia (Tokyo)11, 309–314 (1969)Google Scholar
  8. Gribakin, F. G.: The distribution of the longwave photoreceptors in the compound eye of the honey bee as revealed by selective osmic staining. Vision Res.12, 1225–1230 (1972)Google Scholar
  9. Helversen, O. v.: Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J. comp. Physiol.80, 439–472 (1972)Google Scholar
  10. Järvilehto, M., Zettler, F.: Localised intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina. Z. vergl. Physiol.75, 422–440 (1971)Google Scholar
  11. Laughlin, S. B.: Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in the dark adapted second order neurones. J. comp. Physiol.84, 335–355 (1973)Google Scholar
  12. Laughlin, S. B.: The function of the lamina ganglionaris. In: The compound eye and vision of insects, G. A. Horridge, ed. Oxford: University Press 1974Google Scholar
  13. Laughlin, S. B.: Resistance changes associated with the response of insect monopolar neurons. Z. Naturforsch. (in press)Google Scholar
  14. Menzel, R.: Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene. Z. vergl. Physiol.56, 22–62 (1967)Google Scholar
  15. Menzel, R.: Colour receptors in insects. In: The compound eye and vision of insects, G. A. Horridge, ed. Oxford: University Press (1974)Google Scholar
  16. Menzel, R., Snyder, A. W.: Polarised light detection in the bee,Apis mellifera. J. comp. Physiol.88, 247–270 (1974)Google Scholar
  17. Shaw, S. R.: Organisation of the locust retina. Symp. Zool. Soc. Lond.23, 135–163 (1968)Google Scholar
  18. Snyder, A. W., Menzel, R., Laughlin, S. B.: Structure and function of the fused rhabdom. J. comp. Physiol.87, 99–135 (1973)Google Scholar
  19. Straußfeld, N. J.: Variations and invariants of cell arrangements in the nervous system of insects. In: Verh. Dtsch. Zool. Ges. Ed. W. Rathmayer, 97–108 (1970)Google Scholar
  20. Varela, F. G.: Fine structure of the visual system of the honey bee (Apis mellifera). II. The lamina. J. Ultrastruct. Res.31, 178–194 (1970)Google Scholar
  21. Zettler, F., Järvilehto, M.: Decrement-free conduction of graded potentials along the axon of a monopolar neuron. Z. vergl. Physiol.75, 402–421 (1971)Google Scholar
  22. Zettler, F., Järvilehto, M.: Lateral inhibition in an insect eye. Z. vergl. Physiol.76, 233–244 (1972)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Randolf Menzel
    • 1
    • 2
  1. 1.Department of NeurobiologyAustralian National UniversityCanberraAustralia
  2. 2.Fachbereich Biologie-ZoologieTechnische Hochschule DarmstadtDarmstadtFederal Republic of Germany

Personalised recommendations