Journal of comparative physiology

, Volume 112, Issue 2, pp 123–132 | Cite as

Calcium action potentials in larval muscle fibres of the mothEphestia kühniella Z. (Lepidoptera)

  • Joachim W. Deitmer
  • Werner Rathmayer


  1. 1.

    The ionic requirements for the production of action potentials in the ventral longitudinal muscle fibres of the flour moth larvaEphestia kühniella Zeller (Lepidoptera) were investigated.

  2. 2.

    The amplitude and maximal rate of rise of the action potential evoked by indirect stimulation declined when the extracellular Ca-concentration was reduced (Fig. 1).

  3. 3.

    Action potentials elicited by intracellularly applied current pulses could be generated in the absence of extracellular Na and Mg.

  4. 4.

    Neither TTX (1.5×10−5 g/ml; Fig. 2) nor procaine (15 mM) blocked the action potentials.

  5. 5.

    The generation of action potentials could be prevented by omitting all extracellular Ca (Fig. 3).

  6. 6.

    The action potential overshoot varied with [Ca++]o, having a slope of 24 to 28 mV for a tenfold change in [Ca++]o (Fig. 5).

  7. 7.

    La (1 mM) irreversibly blocked the action potentials (Fig. 7).

  8. 8.

    Both Ba and Sr could replace extracellular Ca in the generation of action potentials (Fig. 8).



Calcium Muscle Fibre Maximal Rate Current Pulse Longitudinal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anwyl, R., Usherwood, P.N.R.: Voltage clamp studies of glutamate synapse. Nature (Lond.)252, 591–592 (1974)Google Scholar
  2. Deitmer, J.: Die ionalen Voraussetzungen für die Bildung von Aktionspotentialen an larvalen Skelettmuskelfasern eines holometabolen Insekts (Ephestia kühniella Zeller, Lepidoptera). Verh. Dtsch. Zool Ges. Hamburg. Stuttgart: G. Fischer (1976a, in press)Google Scholar
  3. Deitmer, J.: Electrical properties of skeletal muscle fibres of the flour moth larvaEphestia kühniella Z. (Lepidoptera). J. Insect Physiol. (1976b, in press)Google Scholar
  4. Duchateau, G., Florkin, M., Leclerq, J.: Concentrations des bases fixes et types de composition de la base totale de l'hemolymphe des insectes. Arch. int. Physiol.61, 518–549 (1953)Google Scholar
  5. Fatt, P., Ginsborg, B.L.: The ionic requirements for the production of action potentials in crustacean muscle fibres. J. Physiol. (Lond.)142, 516–543 (1958)Google Scholar
  6. Florkin, M.S., Jeuniaux, C.: Hemolymph compositions. In: The physiology of insecta (ed. M. Rockstein), Vol. 5, pp. 255–307. New York: Academic Press 1974Google Scholar
  7. Frankenhaeuser, B., Hodgkin, A.L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.)137, 218–244 (1957)Google Scholar
  8. Hagiwara, S.: Ca spike. Adv. Biophys.4, 71–102 (1973)Google Scholar
  9. Hagiwara, S., Naka, K.: The initiation of spike potential in barnacle muscle fibres under low intracellular Ca++. J. gen. Physiol.48, 141–162 (1964)Google Scholar
  10. Hagiwara, S., Takahashi, K.: Surface density of calcium ions and calcium spikes in the barnacle muscle fibre membrane. J. gen. Physiol.50, 583–601 (1967)Google Scholar
  11. Henkart, M.: Localization of calcium binding sites associated with the calcium spike in barnacle muscle. Biophys. Soc. Abstr., 15th annual meeting, p. 203a (1971)Google Scholar
  12. Kusano, K., Grundfest, H.: Ionic requirements for synaptic electrogenesis in neuromuscular transmission of mealworm larvae (Tenebrio molitor). J. gen. Physiol.50, 1092 (1967)Google Scholar
  13. McCann, F.V.: Calcium spikes in moth hearts. Fed. Proc.30, 668 (1971)Google Scholar
  14. Patlak, J. B.: The ionic basis for the action potential in the flight muscle of the fly,Sarcophaga bullata. J. comp. Physiol.107, 1–11 (1976)Google Scholar
  15. Randall, W.C.: Anatomical changes in the neuromuscular complex of the proleg ofGalleria mellonella (L.) (Lepidoptera: Pyralididae) during metamorphosis. J. Morph.125, 105–127 (1968)Google Scholar
  16. Shanes, A.M., Freygang, W.H., Grundfest, H., Amatniek, E.: Anesthetic and calcium action in the voltage clamped squid giant axon. J. gen. Physiol.42, 793–802 (1959)Google Scholar
  17. Taylor, R.E.: Effect of procaine on electrical properties of squid axon membrane. Amer. J. Physiol.196, 1071–1078 (1959)Google Scholar
  18. Treherne, J.E., Pichon, Y.: The insect blood brain barrier. Adv. Insect Physiol.9, 257–313 (1972)Google Scholar
  19. Wareham, A.C., Duncan, C.J., Bowler, K.: Electrogenesis in cockroach muscle. Comp. Biochem. Physiol.48 A, 799–813 (1974)Google Scholar
  20. Washio, H.: The ionic requirements for the initiation of action potentials in insect muscle fibres. J. gen. Physiol.59, 121–134 (1972)Google Scholar
  21. Weevers, R. de G.: A lepidopteran saline: effects of inorganic cation concentrations on sensory, reflex and motor responses in a herbivorous insect. J. exp. Biol.44, 163–175 (1966)Google Scholar
  22. Wood, D.W.: The effect of ions upon neuromuscular transmission in a herbivorous insect. J. Physiol. (Lond.)138, 119–139 (1957)Google Scholar
  23. Yamaguchi, H., Lockshin, R.A., Woodward, D.J.: The intersegmental muscles of silkmoths: ionic components of activity. J. Insect Physiol.18, 243–258 (1972)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Joachim W. Deitmer
    • 1
  • Werner Rathmayer
    • 1
  1. 1.Fachbereich BiologieUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations