Skip to main content
Log in

The sensitivities of dragonfly photoreceptors and the voltage gain of transduction

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The spectral, polarisation and absolute sensitivities of darkadapted retinula cells of the ventral retina of the dragonflyHemicorduliatau are measured by making intracellular recordings of receptor potential.

  2. 2.

    On the basis of their spectral sensitivities the retinula cells fall into two distinct classes. The “single pigment” cells have narrow spectral sensitivity functions corresponding to the absorption spectrum of either a UV (360 nm) or a blue (440 nm) or a green (510 nm) rhodopsin photopigment (Fig. 1). The “linked pigment” cells have broadened spectral sensitivity functions which suggest that at least three rhodopsins contribute to their response (Table 1, Fig. 2).

  3. 3.

    The “single pigment” UV cell has a high PS of 7.1 whereas the “linked pigment” cells are insensitive to polarised light (Figs. 4, 6). The PS(λ) functions of “linked pigment” cells (plots of PS against stimulus wavelength) show that the UV cell acts as a dichroic filter placed in front of the “linked pigment” cells (Figs. 5, 6, 7) and that self-screening plays no role in downgrading “linked pigment” cell PS (Fig. 6).

  4. 4.

    The absolute sensitivity of all cell types is precisely calibrated using monochromatic parallel rays of light of the most effective (peak) wavelength directed along the optical axis of the ommatidium. The PAQ50 (PeakAxial cornealQuantal irradiance required to give a transient response of 50% maximum) is measured and its reciprocal defines the APS50 (AxialPeakSensitivity as determined at the 50% level).

  5. 5.

    When one knows the spectral and angular sensitivities of units APS50 measurements are comparable from cell to cell and organism to organism. In dragonfly ventral retina the “linked pigment” cells and “single pigment” green cells have almost identical absolute sensitivities (APS50 = 1.5× 10−12 S.D. = 1.2× 10−12 whereas the “single pigment”UV cell is 12 times more sensitive (APS50 = 1.8× 10−11, S.D. = 2.2× 10−11 (Fig. 8).

  6. 6.

    The UV cell has a peak-to-peak voltage noise level 7 times greater than that of the “linked pigment”cells, (Figs. 9, 10). The analysis of noise in terms of equivalent intensity (Appendix 1) shows that this voltage noise is generated by the random absorption of photons (photon shot noise) and/or intrinsic noise that is statistically identical (Figs. 11, 12).

  7. 7.

    The high voltage noise levels of the UV cell result from its transducer having a voltage gain greater than that of the other cells. Thus higher gain gives the UV cell a greater absolute sensitivity which compensates for the relative scarcity of UV photons and enables the UV cell to operate in sunlight with a voltage output similar to that of “linked pigment” cells.

  8. 8.

    It is concluded that the retinula cells of the ventral retina show a division of labour into colour, PS and contrast-coding types but absolute sensitivities are carefully matched so that all the cell types described can operate simultaneously with almost identical dynamic response ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum, H., Kolb, G.: Spektrale Empfindlichkeit einzelner Sehzellen der Aeschniden. Z. vergl. Physiol.60, 450–477 (1968)

    Google Scholar 

  • Barlow, H.B.: The physical limits of visual discrimination. In: Photophysiology. Vol. II (ed. A.C. Giese). New York: Academic Press 1964

    Google Scholar 

  • Bennett, R., Tunstall, J., Horridge, G.A.: Spectral sensitivity of single retinula cells of the locust. Z. vergl. Physiol.55, 195–206 (1967)

    Google Scholar 

  • Chappell, R.L., DeVoe, R.D.: Action spectra and chromatic mechanisms of cells in the median ocelli of dragonflies. J. gen. Physiol.65, 399–419 (1975)

    Google Scholar 

  • Corbet, P.S.: A biology of dragonflies. London: Witherby 1962

    Google Scholar 

  • Dartnall, H.J.A.: The interpretation of spectral sensitivity curves. Brit. med. Bull.9, 24–30 (1953)

    Google Scholar 

  • Dartnall, H.J.A.: Photosensitivity. In: Handbook of sensory physiology, Vol. VII/1 (ed. H.J.A. Dartnall). Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Eguchi, E.: Fine structure and spectral sensitivities of retinula cells in the dorsal sector of compound eyes in the dragonflyAeschna. Z. vergl. Physiol.71, 201–218 (1971)

    Google Scholar 

  • Fuortes, M.G.F., Yeandle, S.S.: Probability of occurrence of discrete potential waves in the eye ofLimulus. J. gen. Physiol.47, 443–463 (1964)

    Google Scholar 

  • Hamdorf, K., Höglund, G., Langer, H.: Photoregeneration of visual pigments in a moth. J. comp. Physiol.86, 247–263 (1973)

    Google Scholar 

  • Höglund, G., Hamdorf, K., Rosner, G.: Trichromatic visual system in an insect and its sensitivity control by blue light. J. comp. Physiol.86, 265–279 (1973)

    Google Scholar 

  • Horridge, G.A.: Unit studies on the retina of dragonflies. Z. vergl. Physiol.62, 1–37 (1969)

    Google Scholar 

  • Kirschfeld, K.: Discrete and graded potentials in the compound eye of the flyMusca. In: The functional organisation of the compound eye (ed. C.G. Bernhard). Oxford: Pergamon Press 1966

    Google Scholar 

  • Kirschfeld, K.: The visual system ofMusca: studies on optics, structure and function. In: Information processing in the visual systems of arthropods (ed. R. Wehner). Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Kirschfeld, K.: Das neurale Superpositionsauge. Fortschritte d. Zoologie (ed. M. Lindauer), Vol. XXI, pp. 229–257. Stuttgart: Gustav Fischer 1973

    Google Scholar 

  • Kirschfeld, K.: The absolute sensitivity of lens and compound eyes. Z. Naturforsch.29c, 592–596 (1974)

    Google Scholar 

  • Kolb, G., Autrum, H., Eguchi, E.: Die spektrale Transmission des dioptrischen Apparates vonAeschna cyanea Müll. Z. vergl. Physiol.63, 434–439 (1969)

    Google Scholar 

  • Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second order neurons. J. comp. Physiol.84, 335–355 (1973)

    Google Scholar 

  • Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. II. Receptor signal interactions in the lamina. J. comp. Physiol.92, 357–375 (1974a)

    Google Scholar 

  • Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. III. The transfer of angular information. J. comp. Physiol.92, 377–396 (1974b)

    Google Scholar 

  • Laughlin, S.B.: Receptor function in the apposition eye: an electrophysiological approach. In: Photoreceptor optics (eds., A.W. Snyder, R. Menzel), pp. 479–498. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Menzel, R.: Colour receptors in insects. In: The compound eye and vision of insects (ed. G.A. Horridge). Oxford: Oxford University Press 1975a

    Google Scholar 

  • Menzel, R.: Polarisation sensitivity in insect eyes with fused rhabdoms. In: Photoreceptor optics (eds., A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975b

    Google Scholar 

  • Menzel, R., Knaut, R.: Pigment movement during light and chromatic adaptation in the retinula cells ofFormica polyctena (Hymenoptera, Formicidae). J. comp. Physiol.86, 125–138 (1973)

    Google Scholar 

  • Menzel, R., Snyder, A.W.: Polarised light detection in the bee,Apis mellifera. J. comp. Physiol.88, 247–270 (1974)

    Google Scholar 

  • Pinter, R.B.: Frequency and time domain properties of retinular cells of the desert locust (Schistocerca gregaria) and the house cricket (Acheta domesticus). J. comp. Physiol.77, 383–397 (1972)

    Google Scholar 

  • Reichardt, W.E.: The insect eye as a model for analysis of uptake, transduction and processing of optical data in the nervous system. In: The neurosciences: second study programme (ed. F.O. Schmitt). New York: Rockefeller University Press 1969

    Google Scholar 

  • Ruck, P.: The components of the visual system of a dragonfly. J. gen. Physiol.49, 289–307 (1965)

    Google Scholar 

  • Scholes, J.: Discrete subthreshold potentials in the dimly lit insect eye. Nature (Lond.)202, 572–573 (1964)

    Google Scholar 

  • Schwemer, J., Paulsen, R.: Three visual pigments inDeilephila elpenor. J. comp. Physiol.86, 215–229 (1973)

    Google Scholar 

  • Shaw, S.R.: Organization of the locust retina. Symp. zool. soc. Lond.23, 135–163 (1968)

    Google Scholar 

  • Shaw, S.R.: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res.9, 999–1029 (1969)

    Google Scholar 

  • Shaw, S.R.: Retinal resistance barriers and electrical lateral inhibition. Nature (Lond.)255, 480–483 (1975)

    Google Scholar 

  • Smola, U., Gemperlein, R.: Rezeptorrauschen und Informationskapazität der Sehzellen vonCalliphora erythrocephala undPeriplaneta americana. J. comp. Physiol.87, 393–404 (1973)

    Google Scholar 

  • Snyder, A.W.: Polarization sensitivity of individual retinula cells. J. comp. Physiol.83, 331–360 (1973)

    Google Scholar 

  • Snyder, A.W., Laughlin, S.B.: Dichroism and absorption by photoreceptors. J. comp. Physiol.100, 101–116 (1975)

    Google Scholar 

  • Snyder, A.W., McIntyre, P.: Polarisation sensitivity of twisted fused rhabdoms. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Snyder, A.W., Menzel, R., Laughlin, S.B.: Structure and function of the fused rhabdom. J. comp. Physiol.87, 99–135 (1973)

    Google Scholar 

  • Snyder, A.W., Pask, C.: A theory for changes in spectral sensitivity induced by off axis light. J. comp. Physiol.79, 423–427 (1972)

    Google Scholar 

  • Wasserman, G.S.: Invertebrate color vision and the tuned receptor paradigm. Science180, 268–274 (1973)

    Google Scholar 

  • Wilson, M.: Angular sensitivity of light and dark adapted locust retinula cells. J. comp. Physiol.97, 323–328 (1975)

    Google Scholar 

  • Wyszecki, G., Stiles, W.S.: Color Science. New York-London: Wiley 1967

    Google Scholar 

  • Zettler, F.: Die Abhängigkeit des Übertragungsverhaltens von Frequenz und Adaptationszustand; gemessen am einzelnen Lichtrezeptor vonCalliphora erythrocephala. Z. vergl. Physiol.64, 432–449 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laughlin, S.B. The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J. Comp. Physiol. 111, 221–247 (1976). https://doi.org/10.1007/BF00606466

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00606466

Keywords

Navigation