Advertisement

Journal of comparative physiology

, Volume 150, Issue 2, pp 261–269 | Cite as

Functional poperties of viboreceptors in the legs ofNezara viridula (L.) (Heteroptera, Pentatomidae)

  • Andrej Čokl
Article

Summary

  1. 1.

    Responses of the leg vibratory receptor neurons of the bugNezara viridula to substrate vibrations were recorded electrophysiologically and analysed.

     
  2. 2.

    The low frequency receptor neurons (LFR) respond in a phase-locked manner in the frequency range below 0.12 kHz. The low frequency receptor neurons of the first type (LFR 1) have been analysed in detail. Receptor neurons of this type respond to the upward movement of the leg in a vibration cycle. Their threshold curves follow the line of equal displacement values above 0.05 kHz of the stimulus carrier frequency (Fig. 1). Increasing displacement brings about an increase in the number of spikes per phase (Fig. 2).

     
  3. 3.

    The higher frequency vibratory receptor neurons are of two types. The middle frequency receptor neurons (MFR) show the highest sensitivity to the velocity component of vibration at frequencies around 0.2 kHz (Fig. 1); the high frequency receptor neurons (HFR) are most sensitive to velocity at frequencies between 0.75 and 1 kHz (Fig. 1). In the frequency range below the best velocity sensitivity, the threshold curves of both types of neurons follow the line of equal acceleration values; above the best frequency the curves follow the line of equal displacement values (Fig. 1). The shapes and positions of the response curves of both types depend on the stimulus carrier frequency (Fig. 3). The middle (MFR) and high frequency receptor neurons (HFR) respond with characteristically prolonged responses to applied vibrational stimuli of 0.2 kHz carrier frequency (Figs. 4–6). The phase-locked response pattern is observed in both neuron types in the frequency range up to 0.2 kHz (Figs. 4–6).

     
  4. 4.

    The frequency and time characteristics of the femaleNezara viridula calling song (FS 1) are well followed by the middle (MFR) and high frequency receptor neurons (HFR) (Figs. 7, 8), but the low frequency receptor neurons (LFR) follow the lower frequency components of the same female sound emission only at higher displacement values.

     
  5. 5.

    The origins of the responses of the low (LFR), middle (MFR) and high frequency receptor neurons (HFR) are discussed. The special response characteristics of the higher frequency receptor neurons, i.e. the middle (MFR) and high frequency (HFR) receptor neurons, at 0.2 kHz stimulus frequency may be due to the resonance of the special flaglike structure of cap cells of the subgenual organ.

     

Keywords

Receptor Neuron Threshold Curve Calling Song Sound Emission Vibrational Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

LFR

low frequency receptor neurons

MFR

middle frequency receptor neurons

HFR

high frequency receptor neurons

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum H, Schneider W (1948) Vergleichende Untersuchungen über den Erschütterungssinn von Insekten. Z Vergl Physiol 31:77–88Google Scholar
  2. Burns MD (1974) Structure and physiology of the locust femoral chordotonal organ. J Insect Physiol 20:1319–1339Google Scholar
  3. Čokl A, Amon T (1980) Vibratory interneurons in the central nervous system ofNezara viridula L. (Pentatomidae, Heteroptera). J Comp Physiol 139:87–95Google Scholar
  4. Čokl A, Bogataj E (1982) Factors affecting vibrational communication inNezara viridula L. (Heteroptera, Pentatomidae). Biol Vestn 30:1–20Google Scholar
  5. Čokl A, Kalmring K, Wittig H (1977) The responses of auditory ventral-cord neurons ofLocusta migratoria to vibration stimuli. J Comp Physiol 120:161–172Google Scholar
  6. Čokl A, Gogala M, Blaževič A (1978) Principles of sound recognition in three pentatomide bug species (Heteroptera). Biol Vestn 26:81–94Google Scholar
  7. Debaisieux P (1938) Organes scolopidiaux des pattes d'insectes. Cellule 47:77–202Google Scholar
  8. Devetak D, Gogala M, Čokl A (1978) A contribution to the physiology of vibration receptors in the bugs of the family Cydnidae (Heteroptera). Biol Vestn 26:131–139Google Scholar
  9. Gogala M, Čokl A, Drašlar K, Blaževič A (1974) Substrateborne sound communication in Cydnidae (Heteroptera). J Comp Physiol 94:25–31Google Scholar
  10. Howse PE (1964) An investigation into the mode of action of the subgenual organ in the termite,Zootermopsis angusticollis Emerson and in the cockroach,Periplaneta americana L. J Insect Physiol 10:409–429Google Scholar
  11. Kühne R (1982) Neurophysiology of the vibration sense in locusts and bushcrickets: response characteristics of single receptor units. J Insect Physiol 28:155–163Google Scholar
  12. Kühne R, Lewis B, Kalmring K (1980) The responses of ventral cord neurons ofDecticus verrucivorus (L.) to sound and vibration stimuli. Behav Proc 5:55–74Google Scholar
  13. Markl H (1970) Die Verständigung durch Stridulationssignale bei Blattschneiderameisen. III. Die Empfindlichkeit für Substratvibrationen. Z Vergl Physiol 69:6–37Google Scholar
  14. Rheinlaender J (1975) Transmission of acoustic information at three neuronal levels in the auditory system ofDecticus verrucivorus (Tettigoniidae, Orthoptera). J Comp Physiol 97:1–53Google Scholar
  15. Schneider W (1950) Über den Erschütterungssinn von Käfern und Fliegen. Z Vergl Physiol 32:287–302Google Scholar
  16. Schnorbus H (1971) Die subgenualen Sinnesorgane vonPeriplaneta americana: Histologie und Vibrationsschwellen. Z Vergl Physiol 71:14–48Google Scholar
  17. Usherwood PNR, Runion HI, Campbell JI (1968) Structure and function of a chordotonal organ in the locust leg. J Exp Biol 48:305–323Google Scholar
  18. Wiese K (1972) Das mechanorezeptorische Beuteortungssystem vonNotonecta. I. Die Funktion des tarsalen Scolopidialorgans. J Comp Physiol 78:83–102Google Scholar
  19. Young D (1970) The structure and function of a connective chordotonal organ in the cockroach leg. Philos Trans R Soc Lond [Biol] 256:401–428Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Andrej Čokl
    • 1
  1. 1.Institute of BiologyThe Edvard Kardelj University of LjubljanaLjubljanaYugoslavia

Personalised recommendations