Skip to main content
Log in

The effect of supersaturation on the parabolic rate constant for internal oxidation with production of a pure oxide: An approximate analytical treatment

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Internal oxidation in binary alloys leading to the precipitation of a pure oxide is examined, taking into account the finite value of the solubility product of the oxide in the base metal, and approximate analytical expressions for the profiles of the concentrations of oxygen and the less noble component are derived. In contradiction with the original analysis by Wagner, it is found that the knowledge of fundamental parameters like the solubility of oxygen and the diffusivity of oxygen and the oxidized metal in the alloy are not sufficient to calculate the parabolic rate constant for internal oxidation. This in fact depends also on the extent of supersaturation required to nucleate new oxide particles in front of the internally oxidized region. In absence of this information only an upper limiting value for the rate constant may be obtained, corresponding to zero supersaturation, while use of the experimental value of the rate constant enables the critical value of the supersaturation for the system examined to be calculated. In addition, the effect of ternary interactions on the oxygen diffusion in the alloy is examined and it is shown how the apparent product of the solubility and diffusivity of oxygen in the base metal as measured from internal oxidation experiments according to Wagner's formulas may be a function of the alloy composition, a fact which is not predicted by simpler treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. N. Rhines,Trans. AIME 137, 246 (1940).

    Google Scholar 

  2. F. N. Rhines, W. A. Johnson, and W. A. Anderson,Trans. AIME 147, 205 (1942).

    Google Scholar 

  3. F. N. Rhines and A. H. Grobe,Trans. AIME 147, 318 (1942).

    Google Scholar 

  4. L. S. Darken,Trans. AIME 150, 157 (1942).

    Google Scholar 

  5. J. L. Meijering and M. J. Druyvesteyn,Phil. Res. Rept.,2, 81 (1947).

    Google Scholar 

  6. J. L. Meijering and M. J. Druyvesteyn,Phil. Res. Rept.,2, 260 (1947).

    Google Scholar 

  7. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  8. F. Maak,Z. Metallkd. 52, 545 (1961).

    Google Scholar 

  9. R. A. Rapp,Acta Metall. 9, 730 (1961).

    Google Scholar 

  10. R. A. Rapp and H. D. Colson,Trans. AIME 236, 1616 (1966).

    Google Scholar 

  11. M. T. Hepworth, R. P. Smith, and T. E. Turkdogan,Trans. AIME 236, 1278 (1966).

    Google Scholar 

  12. J. H. Swisher and T. E. Turkdogan,Trans. AIME 239, 426 (1967).

    Google Scholar 

  13. C. Wagner,Corros. Sci. 8, 889 (1968).

    Google Scholar 

  14. J. S. Kirkaldy,Can. Metall. Q. 8, 35 (1969).

    Google Scholar 

  15. J. S. Kirkaldy, inOxidation of Metals and Alloys (ASM, Metals Park, Ohio, 1971), p. 101.

    Google Scholar 

  16. W. W. Smeltzer and D. P. Whittle,J. Electrochem. Soc. 125, 1116 (1978).

    Google Scholar 

  17. D. P. Whittle, F. Gesmundo, B. D. Bastow, and G. C. Wood,Philos. Mag. 44, 43 (1981).

    Google Scholar 

  18. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  19. J. H. Swisher, inOxidation of Metals and Alloys (ASM, Metals Park, Ohio, 1971), p. 235.

    Google Scholar 

  20. J. L. Meijering, inAdvances in Materials Science,5, 1 (1971).

    Google Scholar 

  21. G. Böhm and M. Kahlweit,Acta Metall. 12, 641 (1964).

    Google Scholar 

  22. J. Crank,Mathematics of Diffusion (Oxford University Press, London, 1956), p. 104.

    Google Scholar 

  23. E. A. Guillemin,The Mathematics of Circuit Analysis (Wiley, New York, 1950), p. 541.

    Google Scholar 

  24. P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

    Google Scholar 

  25. J. S. Kirkaldy, inAdvances in Materials Research, H. Herman, ed. (Wiley, New York, 1970), Vol. 4.

    Google Scholar 

  26. P. E. Childs and J. B. Wagner, Jr., inHeterogeneous Kinetics at Elevated Temperatures, G. R. Belton and W. L. Worrell, eds. (Plenum, New York, 1970), p. 269.

    Google Scholar 

  27. A. D. Le Claire, inTreatise on Solid State Chemistry, N. B. Hannay, ed. (Plenum, New York, 1976), Vol. 4, p. 1.

    Google Scholar 

  28. C. Wagner,Acta Metall. 21, 1297 (1973).

    Google Scholar 

  29. C. Wagner,Thermodynamics of Alloys (Addison-Wesley, Cambridge, 1952), p. 47.

    Google Scholar 

  30. Reference 29, p. 23.

    Google Scholar 

  31. K. Fitzner,Z. Metallkd. 69, 751 (1978).

    Google Scholar 

  32. C. B. Alcock and F. D. Richardson,Acta Metall. 6, 385 (1958).

    Google Scholar 

  33. C. B. Alcock and F. D. Richardson,Acta Metall. 8, 882 (1960).

    Google Scholar 

  34. G. R. Belton and E. S. Tankins,Trans. AIME 233, 1892 (1965).

    Google Scholar 

  35. U. Block and H. P. Stuwe,Z. Metallkd. 60, 766 (1969).

    Google Scholar 

  36. N. H. Gokcen,Scripta Metall. 3, 157 (1969).

    Google Scholar 

  37. R. J. Fruehan and F. D. Richardson,Trans. AIME 245, 1721 (1969).

    Google Scholar 

  38. K. T. Jacob and J. H. E. Jeffes,Trans. AIME C80, 32 (1971).

    Google Scholar 

  39. K. T. Jacob and C. B. Alcock,Acta Met. 20, 221 (1972).

    Google Scholar 

  40. T. Chiang and Y. A. Chang,Metall. Trans. 7B, 453 (1976).

    Google Scholar 

  41. J. S. Kirkaldy and G. R. Purdy,Can. J. Phys. 40, 208 (1962).

    Google Scholar 

  42. J. P. Coughlin, Bureau of Mines Bulletin, 542 (1954).

  43. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley,Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, Metals Park, Ohio, 1973).

    Google Scholar 

  44. J. E. Verfurth and R. A. Rapp,Trans. AIME 230, 1310 (1964).

    Google Scholar 

  45. R. L. Pastorek and R. A. Rapp,Trans. AIME 245, 1711 (1969).

    Google Scholar 

  46. T. A. Ramanarayanan and W. L. Worrell,Metall. Trans. 5, 1773 (1974).

    Google Scholar 

  47. A. V. Ramana Rao and V. B. Tare,Z. Metallkd. 63, 70 (1972).

    Google Scholar 

  48. S. Wood, D. Adamonis, W. A. Soffa, and G. H. Meier, O. N. R. Report NRO 31-749 (1973).

  49. F. Bouillon and J. Orszagh,J. Phys. Chem. Solids 33, 1533 (1972).

    Google Scholar 

  50. J. Orszagh and F. Bouillon,Mem. Sci. Rev. Metall. 70, 319 (1973).

    Google Scholar 

  51. R. Kirchheim,Acta Metall. 27, 869 (1979).

    Google Scholar 

  52. N. Matsuno and H. Oikawa,Metall. Trans. 6A, 2191 (1975).

    Google Scholar 

  53. D. Bartdorff, G. Neumann and P. Reimers,Philos. Mag. 38, 157 (1978).

    Google Scholar 

  54. S. Wood, D. Adamonis, A. Guha, W. A. Soffa, and G. H. Meier,Metall. Trans. 6A, 1793 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesmundo, F., Viani, F. & Doví, V. The effect of supersaturation on the parabolic rate constant for internal oxidation with production of a pure oxide: An approximate analytical treatment. Oxid Met 17, 99–125 (1982). https://doi.org/10.1007/BF00606195

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00606195

Key words

Navigation