Oxidation of Metals

, Volume 17, Issue 1–2, pp 55–76 | Cite as

Kinetics and mechanisms of the oxidation of cobalt at 600–800°C

  • H. S. Hsu
  • G. J. Yurek


Two-phase layered scales comprising CoO and Co3O4 formed on cobalt during oxidation at 600°, 700°, and 800°C and at oxygen partial pressures in the range 0.001–1 atm. The kinetics, which were obtained by thermogravimetric analysis, obeyed a parabolic rate law after an initial, non-parabolic stage of oxidation. The monoxide consisted of relatively large grains (∼10 μ) and the spinel comprised small grains (⪝3 μ) for all conditions of oxidation. Grain boundary diffusion of cations played a significant role in the growth of the spinel layer. Thermogravimetric data and the steady-state ratio of the oxide layer thicknesses were employed to calculate the rates of thickening of the individual oxide layers and the rate of oxidation of CoO to Co3O4.

Key words

oxidation cobalt diffusion grain boundaries Co3O4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Arkharov and Z. A. Voroshilova,Zh. Tekh. Fiz. 6, 781 (1936).Google Scholar
  2. 2.
    C. R. Johns and W. M. Balwdin, Jr.,Trans. AIME 185, 720 (1949).Google Scholar
  3. 3.
    F. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 98, 241 (1951).Google Scholar
  4. 4.
    D. W. Bridges, J. P. Baur, and W. M. Fassell, Jr.,J. Electrochem. Soc. 103, 614 (1956).Google Scholar
  5. 5.
    J. Paidassi, M. Vallée, and P. Pépin,Mem. Sci. Rev. Metall. 62, 789 (1965).Google Scholar
  6. 6.
    J. Paidassi, M. Vallée, and P. Pépin,Mem. Sci. Rev. Metall. 62, 857 (1965).Google Scholar
  7. 7.
    J. Krüger, A. Melin, and H. Winterhager,Cobalt 33, 176 (1966).Google Scholar
  8. 8.
    F. Morin and M. Rigand,Can. Metall. Q. 9, 521 (1970).Google Scholar
  9. 9.
    P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (John Wiley and Sons, New York, 1972), p. 242.Google Scholar
  10. 10.
    C. B. Alcock and M. G. Hocking,Trans. AIME 75C, 27 (1966).Google Scholar
  11. 11.
    L. E. K. Holappa,Acta Polytech. Scand. Chem. Inc. Metall. Ser. 92, 40 (1970).Google Scholar
  12. 12.
    K. Przybylski and W. W. Smeltzer,J. Electrochem. Soc. 128, 897 (1981).Google Scholar
  13. 13.
    W. W. Smeltzer, R. R. Haering, and J. S. Kirkaldy,Acta Metall. 9, 880 (1961).Google Scholar
  14. 14.
    H. S. Hsu and G. J. Yurek, Massachusetts Institute of Technology, Cambridge, Massachusetts, unpublished results (1981).Google Scholar
  15. 15.
    G. J. Yurek, J. P. Hirth, and R. A. Rapp,Oxid. Met. 8, 265 (1974).Google Scholar
  16. 16.
    F. Gesmundo and F. Viani,Corros. Sci. 18, 217 (1978).Google Scholar
  17. 17.
    C. Wagner,Prog. Solid. State Chem. 10, 3 (1975).Google Scholar
  18. 18.
    M. H. Davies, M. T. Simnad, and C. E. Birchenall,Trans. AIME 191, 889 (1951);197, 1250 (1953).Google Scholar
  19. 19.
    C. E. Meyers, M.S. thesis, Massachusetts Institute of Technology (February 1980).Google Scholar
  20. 20.
    R. Dieckmann, H. Schmalzried, and T. O. Mason,Archiv. Eisenhüttenwes. 52, 211 (1981).Google Scholar
  21. 21.
    R. Dieckmann, University of Hannover, Hannover, Germany, private communication (1981).Google Scholar
  22. 22.
    P. G. Shewmon,Diffusion in Solids (McGraw-Hill, New York, 1963) pp. 166–175.Google Scholar
  23. 23.
    J. M. Perrow, W. W. Smeltzer, and J. D. Embury,Acta Metall. 16, 1209 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • H. S. Hsu
    • 1
  • G. J. Yurek
    • 1
  1. 1.The Corrosion LaboratoryMassachusetts Institute of Technology Cambridge

Personalised recommendations