Advertisement

Journal of Comparative Physiology A

, Volume 162, Issue 2, pp 213–223 | Cite as

The mechanics of stridulation of the cricketGryllus campestris

  • Uwe T. Koch
  • Christopher J. H. Elliott
  • Karl -Heinz Schäffner
  • Hans -Ulrich Kleindienst
Article

Summary

Details in the stridulatory movement ofGryllus campestris were investigated using an improved high resolution miniature angle measurement system. The following results were obtained: During the closing (sound producing) stroke, the speed of the plectrum always has the same value (within measuring accuracy) at a given position. Plectrum speed is directly proportional to tooth spacing, which is known to vary along the file. The only exception to this rule were occasions when closing velocities of precisely 2 times the standard value were found. In between values were never recorded. While temperature has a large effect on the opening speed and duration, the closing speed has a very smallQ10 (0.07) which is equal to theQ10 of the resonance frequency of the harp. When the harps are removed, the proportionality between tooth spacing and scraper velocity is lost; the velocity is much increased (up to 3-fold) and the variance of the speed is enhanced 5-fold.

These results are discussed with respect to 3 hypothetical models explaining the function of the sound generator system. The model describing the cricket sound generator as a clockwork with an escapement system is capable of accommodating all experimental data without any extra assumptions.

Keywords

Experimental Data High Resolution Resonance Frequency Measurement System Generator System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey W, Broughton WB (1970) The mechanics of stridulation in bush crickets (Tettigonioidea, Orthoptera). J Exp Biol 52:507–517Google Scholar
  2. Bailey WJ, Stephen RO (1984) Auditory acuity in the orientation behavior of the bushcricketPachysagella australis Walker (Orthoptera, Tettigoniidae, Saginae). Anim Behav 32:816–829Google Scholar
  3. Bennet-Clark HC (1970) The mechanism and efficiency of sound production in mole crickets. J Exp Biol 52:619–652Google Scholar
  4. Doherty JA (1985) Temperature coupling and ‘trade-off’ phenomena in the acoustic communication system of the cricket,Gryllus bimaculatus de Geer (Gryllidae). J Exp Biol 114:17–35Google Scholar
  5. Dumortier B (1963) The physical characteristics of sound emissions in Arthropoda. In: Busnel RG (ed) Acoustic behaviour of animals. Elsevier Publishing Company, Amsterdam London New York, pp 346–373Google Scholar
  6. Elliott CJH, Koch UT (1983) Sensory feedback stabilizing reliable stridulation in the field cricketGryllus campestris L. Anim Behav 31:887–901Google Scholar
  7. Elliott CJH, Koch UT (1985) The clockwork cricket. Naturwissenschaften 72:150–152Google Scholar
  8. Elsner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13:229–355Google Scholar
  9. Gazeley WJ (1975) Clock and watch escapements. 2nd edn. Butterworth, LondonGoogle Scholar
  10. Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen vonGryllus campestris L. Z Tierpsychol 12:12–48Google Scholar
  11. Koch UT (1980) Analysis of cricket stridulation using miniature angle detectors. J Comp Physiol 136:247–256Google Scholar
  12. Koch UT, Elliott CJH (1982) Miniature angle detectors — principles and improved evaluation methods. In: Nachtigall W (ed) Biona-Report 2. Akad Wiss Mainz. Fischer, Stuttgart New York, pp 41–50Google Scholar
  13. Kutsch W (1969) Neuromusculäre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten. Z Vergl Physiol 63:335–378Google Scholar
  14. Nocke H (1971) Biophysik der Schallerzeugung durch die Vorderflügel der Grillen. Z Vergl Physiol 74:272–314Google Scholar
  15. Pasquinelly F, Busnel M-C (1954) Etudes preliminaires sur les mécanismes de la production des sons par les Orthoptères. Ann Epiphytes 1954:145–153Google Scholar
  16. Pierce GW (1948) The songs of insects. Harvard University Press, Cambridge, Mass.Google Scholar
  17. Regen J (1913) Über die Anlockung des Weibchens vonGryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens. Pflügers Arch 155:193–200Google Scholar
  18. Schaffner KH (1985) Mechanorezeptoren auf den Vorderflügeln der Grillenmännchen und ihre Bedeutung bei der Stridulation. Dissertation, Universität MünchenGoogle Scholar
  19. Schaffner KH, Koch UT (1987) Effects of wing campaniform sensilla lesions on stridulation in crickets. J Exp Biol (in press)Google Scholar
  20. Sales GD, Pye JD (1974) Ultrasonic communication by animals. Chapman and Hall, London, pp 98–148Google Scholar
  21. Schelleng JC (1974) The physics of the bowed string. Sci Am 230:87–95Google Scholar
  22. Suga N (1966) Ultrasonic production and its reception in some neotropical Tettigoniidae. J Insect Physiol 12:1039–1050Google Scholar
  23. Walker TJ (1962) Factors responsible for intra-specific variation in the calling song of crickets. Evolution 16:407–428Google Scholar
  24. Zippelius HM (1949) Die Paarungsbiologie einiger Orthopteren-Arten. Z Tierpsychol 6:372–390Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Uwe T. Koch
    • 1
  • Christopher J. H. Elliott
    • 1
  • Karl -Heinz Schäffner
    • 1
  • Hans -Ulrich Kleindienst
    • 1
  1. 1.Max-Planck-Institut für VerhaltensphysiologieAbteilung HuberFederal Republic of Germany

Personalised recommendations