Mechanics of Composite Materials

, Volume 15, Issue 5, pp 607–613 | Cite as

Evaluation of viscoelastic characteristics of polymeric materials

  • Yu. S. Urzhumtsev
  • Yu. O. Yanson
Testing Methods


Polymeric Material Viscoelastic Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. S. Urzhumtsev and R. D. Maksimov, Forecast of the Deformability of Polymeric Materials [in Russian], Riga (1975).Google Scholar
  2. 2.
    M. A. Koltunov, ″Selection of kernels for the solution of problems with account of creep and relaxation,″ Mekh. Polim., No. 4, 483 (1966).Google Scholar
  3. 3.
    M. A. Koltunov, Creep and Relaxation [in Russian], Moscow (1976).Google Scholar
  4. 4.
    Yu. N. Rabotnov, Elements of the Hereditary Mechanics of Solids [in Russian], Moscow (1977).Google Scholar
  5. 5.
    A. K. Malmeister, ″Statistical interpretation of rheological equations,″ Mekh. Polim., No. 2, 197 (1966).Google Scholar
  6. 6.
    V. A. Kargin and G. L. Slonimskii, Short Essays on the Physical Chemistry of Polymers [in Russian], Moscow (1967).Google Scholar
  7. 7.
    S. R. Rafikov, S. A. Pavlova, and I. I. Tverdokhlebova, Methods for the Determination of Molecular Weight and Polydispersion of Highmolecular Compounds [in Russian], Moscow (1963).Google Scholar
  8. 8.
    V. A. Kargin and G. L. Slonimskii, ″Determination of the molecular weight of linear polymers from their mechanical properties,″ Zh. Fiz. Khim.,23, No. 5, 563 (1949).Google Scholar
  9. 9.
    G. M. Bartenev and Yu. V. Zelenev, Course in the Physics of Polymers [in Russian], Moscow (1976).Google Scholar
  10. 10.
    L. P. Orlenko, Behavior of Materials Exposed to Severe Dynamic Stresses [in Russian], Moscow (1964).Google Scholar
  11. 11.
    S. M. Kokoshvili, Methods for the Dynamic Testing of Rigid Polymeric Materials (Handbook) [in Russian], Riga (1978).Google Scholar
  12. 12.
    S. M. Kokoshvili, P. P. Kalnin', and Yu. O. Yanson, ″Quasistatic methods for the study of the dynamic properties of rigid polymers,″ Mekh. Polim., No. 4, 683 (1974).Google Scholar
  13. 13.
    A. F. Kreger and Yu. O. Yanson, ″Construction of a single spectrum of relaxation times of polymeric materials,″ Mekh. Polim., No. 1, 5 (1977).Google Scholar
  14. 14.
    V. A. Latishenko, Diagnosis of Rigidity and Strength of Materials [in Russian], Riga (1968).Google Scholar
  15. 15.
    A. F. Kreger, ″Algorithm for the detection of the minimum of a function with many variables by the descent (hill-climbing) method. Inv. No. P000637,″ Algoritmy i Programmy, No. 2, 9 (1974).Google Scholar
  16. 16.
    Z. V. Kalnroze, ″Algorithm for the determination of the spectrum of creep retardations by the gradient method,″ unpublished data.Google Scholar
  17. 17.
    A. F. Kreger, ″Algorithm for the determination of the parameters of the resolvent (kernel) of unidimensional linear viscoelasticity from the given parameters of the kernel (resolvent), presented by a sum of exponents. Inv. No. 001077,″ Algoritmy i Programmy, No. 1, 27 (1975).Google Scholar
  18. 18.
    I. Ya. Dzene, A. F. Kregers, and U. K. Vilks, ″Characteristics of the deformation process in the case of creeping and represented creeping of polymers under the conditions of uniaxial stretching. 2.,″ Mekh. Polim., No. 4, 589 (1974).Google Scholar
  19. 19.
    M. A. Koltunov, ″Nuclei in the theory of shells with hereditary properties,″ in: Studies of the Theory of Plates and Shells [in Russian], No. 5, Kazan' (1967), pp. 640–645.Google Scholar
  20. 20.
    Yu. N. Rabotnov, L. Kh. Papernik, and E. N. Zvonov, Tables of the Fractional Exponential Function of Negative Parameters and Its Integral [in Russian], Moscow (1969).Google Scholar
  21. 21.
    V. S. Ekel'chik, V. S. Ismailova, S. N. Kostritskii, and A. K. Sborovskii, ″Presentation of the temperature function of the viscoelastic properties of polymers in the dynamic regime based on the linear theory of thermoviscoelasticity,″ Mekh. Polim., No. 5, 915 (1977).Google Scholar
  22. 22.
    V. I. Zelin and Yu. O. Yanson, ″Determination of creep kernels from results obtained in short-term tests,″ Mekh. Polim., No. 6, 972 (1977).Google Scholar
  23. 23.
    Z. V. Kalnroze and Yu. O. Yanson, ″Algorithm for the optimization of parameters of the kernel of the integral operator,″ unpublished data.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Yu. S. Urzhumtsev
    • 1
  • Yu. O. Yanson
    • 1
  1. 1.Institute of Polymer MechanicsAcademy of Sciences of the Latvian SSRRiga

Personalised recommendations