Mechanics of Composite Materials

, Volume 15, Issue 5, pp 520–523 | Cite as

Experimental evaluation of the strength anisotropy of a unidirectionally reinforced organic fiber-reinforced plastic

  • E. A. Sokolov
Strength Of Composites


The strength of a unidirectional organic fiber-reinforced plastic has been experimentally determined in various special cases of plane stress. An analysis of the data obtained shows that it is possible to describe the strength of the material in plane stress by means of a second-order surface equation containing linear and quadratic terms. The dependence of the strength in tension and compression on the angle between the directions of loading and reinforcement has been predicted and experimentally confirmed using the values found for the components of the strength surface tensors. The results of the study can be used to estimate the strength of multilayer organic fiber-reinforced plastics in cases where a unidirectionally reinforced layer can be taken as the basic structural element of the material.


Anisotropy Experimental Evaluation Quadratic Term Plane Stress Surface Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. Roulands, ″Flow and loss of carrying capacity of composites in a biaxial state of stress: comparison of calculation and experiment,″ in: Inelastic Properties of Composites [in Russian], Moscow (1978), pp. 140–179.Google Scholar
  2. 2.
    ″The high-strength synthetic fiber Vniivlon N,″ Khim. Volokna, No. 1, 76 (1971).Google Scholar
  3. 3.
    ″A new high-modulus fiber,″ Termostoikie Plastiki, No. 4, 12–16 (1973).Google Scholar
  4. 4.
    K. E. Perepelkin, ″Mechanical properties of oriented polymeric structures used as reinforcement,″ in: Fibrous and Particle-Reinforced Composites [in Russian], Moscow ″ (1976), pp. 165–171.Google Scholar
  5. 5.
    G. P. Mashinskaya, ″Organovoloknits: composites reinforced with polymer fibers,″ in: Fibrous and Particle-Reinforced Composites [in Russian], Moscow (1976), pp. 171–176.Google Scholar
  6. 6.
    V. L. Blagonadezhin, N. S. Mezentsev, V. D. Merkulov, and V. D. Polyakov, ″Experimental Investigation of the physicomechanical characteristics of an organocarbon plastic,″ Tr. Mosk. Energ. Inst., No. 280, 43–46 (1976).Google Scholar
  7. 7.
    G. I. Kudryavtsev and I. V. Zhmaeva, ″Organic fibers — reinforcing materials,″ Zh. Vses. Khim. Ova.,23, No. 3, 253–258 (1978).Google Scholar
  8. 8.
    Yu. M. Tarnopol'skii and T. Ya. Kintsis, Static Testing Methods for Reinforced Plastics [in Russian], Moscow (1975).Google Scholar
  9. 9.
    I. G. Zhigun and V. V. Mikhailov, ″Tensile testing of high-strength unidirectional composites,″ Mekh. Polim., No. 4, 717–723 (1978).Google Scholar
  10. 10.
    I. M. Whitney, ″Analysis of the rail shear test,″ J. Compos. Mater., No. 5, 25–34 (1971).Google Scholar
  11. 11.
    Z. T. Upitis and R. B. Rikards, ″Dependence of the strength of a composite on the structure of the reinforcement for plane stress,″ Mekh. Polim., No. 6, 1018–1024 (1976).Google Scholar
  12. 12.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Rigid Polymeric Materials [in Russian], 2nd ed., Riga (1972).Google Scholar
  13. 13.
    G. M. Gunyaev, ″Realization of the mechanical properties of the fiber in high-modulus polymeric composites,″ Mekh. Polim., No. 6, 1123–1125 (1972).Google Scholar
  14. 14.
    V. N. Tyukaev, ″Glass laminates,″ in: Structural Plastics [in Russian], Moscow (1974), pp. 120–204.Google Scholar
  15. 15.
    A. T. Tumanov, V. A. Yartsev, A. M. Korotaev, N. M. Kuvshinov, and T. I. Pilipenko, ″High-technology KMB-3 type high-strength boron-reinforced plastic,″ in: Aviation Materials [in Russian], No. 2, Moscow (1977), pp 24–30.Google Scholar
  16. 16.
    A. T. Tumanov, G. M. Gunyaev, V. G. Lyuttsau, and E. I. Stepanychev, ″Structure, properties and testing of carbon-reinforced plastics,″ Mekh. Polim., No. 2, 248–257 (1975).Google Scholar
  17. 17.
    I. P. Khoroshilova, T. R. Kapitonova, and V. P. Lozovskaya, ″Epoxy carbon-reinforced plastics KMU-3Z, KMU-3Zn, and KMU-3,″ in: Aviation Materials [in Russian], No. 2, Moscow (1977), pp. 19–24.Google Scholar
  18. 18.
    R. Hill, Mathematical Theory of Plasticity, Oxford University Press.Google Scholar
  19. 19.
    L. Fisher, ″How to predict structural behaviour of R. P. laminates,″ Mod. Plast., No. 10, 120–203 (1960).Google Scholar
  20. 20.
    A. K. Malmeister, ″Geometry of theories of strength,″ Mekh. Polim., No. 4, 519–534 (1966).Google Scholar
  21. 21.
    R. L. Foie, ″Inelastic micromechanics of the shrinkage stresses in composites,″ in: Inelastic Properties of Composites [in Russian], Moscow (1978), pp. 249–294.Google Scholar
  22. 22.
    Z. T. Upitis, Ya. A. Brauns, and R. B. Rikards, ″Determination of the components of strength surface tensors by least squares,″ Mekh. Polim., No. 3, 552–554 (1974).Google Scholar
  23. 23.
    É. M. Vu, ″Phenomenological fracture criteria for anisotropic media,″ in: Mechanics of Composites [in Russian], Vol. 2, Moscow (1978), pp. 401–498.Google Scholar
  24. 24.
    G. A. Teters, R. B. Rikards, and V. L. Narusberg, Optimization of Layered Composite Shells [in Russian], Riga (1978).Google Scholar
  25. 25.
    R. D. Maksimov, É. Z. Plume, and E. A. Sokolov, ″Investigation of the temperature dependence of the strength of a fabric composite in plane stress,″ Mekh. Polim., No. 3, 452–457 (1978).Google Scholar
  26. 26.
    E. A. Sokolov, A. F. Kreger, and R. D. Maksimov, ″Comparative analysis of the strength anisotropy of glass- and organic fiber-reinforced textolites,″ Mekh. Polim., No. 5, 841–847 (1978).Google Scholar
  27. 27.
    F. P. Belyankin, V. F. Yatsenko, and G. G. Margolin, Strength and Deformability of GlassReinforced Plastics in Biaxial Compression [in Russian], Kiev (1971).Google Scholar
  28. 28.
    É. Z. Plume, ″Determination of the components of strength surface tensors,″ Algoritmy Programmy, No. 1, 46 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • E. A. Sokolov
    • 1
  1. 1.Institute of Polymer MechanicsAcademy of Sciences of the Latvian SSRRiga

Personalised recommendations