Mechanics of Composite Materials

, Volume 17, Issue 3, pp 294–302 | Cite as

Numerical solution of problems involving the statics of geometrically nonlinear anisotropic multilayer shells of revolution

  • É. I. Grigolyuk
  • G. M. Kulikov


Multilayer Shell Anisotropic Multilayer Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    É. I. Gribolyuk and F. A. Kogan, “Modern status of the theory of multilayer shells,” Prikl. Mekh.,8, No. 6, 3–20 (1972).Google Scholar
  2. 2.
    É. I. Grigolyuk and I. T. Selezov, Nonclassical Theories of Rod, Plate, and Shell Oscillations. Results of Science and Engineering. Mechanics of Solid Deformable Bodies [in Russian], Vol. 5, Moscow (1973), p. 272.Google Scholar
  3. 3.
    A. K. Galin'sh, “Computation of plates and shells on the basis of more precisely defined theories,” Issled. Teor. Plastin Obolochek, No. 5, 66–92 (1967).Google Scholar
  4. 4.
    A. K. Galin'sh, “Computation of plates and shells on the basis of more precisely defined theories,” Issled. Teor. Plastin Obolochek, Nos. 6 and 7, 23–64 (1970).Google Scholar
  5. 5.
    Shell Theory with Allowance for Transverse Shear [in Russian], Kazan (1977).Google Scholar
  6. 6.
    V. E. Spiro, “A variant of the geometrically nonlinear theory of anisotropic shells, which accounts for transverse shear,” Mekh. Polim., No. 5, 863–871 (1969).Google Scholar
  7. 7.
    V. N. Mal'gin, “Solution algorithms for problems associated with the strength, stability, and oscillations of shells of revolution, based on Timoshenko-type equations,” Metody Resheniya Zadach Uprugosti Platichnosti, No. 7, 137–142 (1973).Google Scholar
  8. 8.
    A. T. Vasilenko, G. P. Golub, and Ya. M. Grigorenko, “Determination of the stressed state of multilayer orthotropic shells of variable stiffness in a more precisely defined arrangement,” Prikl. Mekh.,12, No. 2, 40–47 (1976).Google Scholar
  9. 9.
    M. S. Ganeeva, “Basic nonlinear relationships of the more precisely defined theory of thick multilayer orthotropic shells,” Statika Dinamika Obolochek, No. 8, 19–31 (1977).Google Scholar
  10. 10.
    N. P. Semenyuk, “On equations of the geometrically nonlinear theory of Timoshenko-type shells,” Prikl. Mekh.,14, No. 2, 128–132 (1978).Google Scholar
  11. 11.
    G. A. Cohen, “Transverse shear stiffness of laminated anisotropic shells,” Comput. Meth. Appl. Mech. Eng.,13, No. 2, 205–220 (1978).Google Scholar
  12. 12.
    I. I. Sokolovskaya, “Development of the Reissner approach in constructing applied theory of multilayer orthotropic shells with ultimate shear stiffness,” Prikl. Mekh.,16, No. 3, 38–44 (1980).Google Scholar
  13. 13.
    K. Marguerre, “Zur Theorie der gekrümmten Platte grosser Formänderung,” in: Jahrbuch 1939 der Deutschen Academie der Luftfahrtforschung, Vol. 1, Nos. 413–418, Proceedings of the 5th International Congress of Applied Mechanics. Cambridge, Massachusetts (1938), New York-London (1939), pp. 93–101.Google Scholar
  14. 14.
    É. I. Grigolyuk and V. I. Mamai, “On one variant of equations of the theory of finite displacements of inclined shells,” Prikl. Mekh.,10, No. 2, 3–13 (1974).Google Scholar
  15. 15.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Rigid Polymer Materials [in Russian], Riga (1972).Google Scholar
  16. 16.
    Ya. M. Grigorenko and A. T. Vasilenko, “Solution of problems associated with the axisymmetric deformation of laminar anisotropic shells of revolution,” Prikl. Mekh.,7, No. 8, 3–8 (1971).Google Scholar
  17. 17.
    Ya. M. Grigorenko, Isotropic and Anisotropic Laminar Variable-Stiffness Shells of Revolution [in Russian], Kiev (1973).Google Scholar
  18. 18.
    J. E. Ashton and J. M. Whitney, Theory of Laminated Plates, Stamford (1970).Google Scholar
  19. 19.
    S. T. Gulati and F. Essenburg, “Effects of anisotropy in axisymmetric cylindrical shells,” Trans. Am. Soc. Mech. Eng.,E34, No. 3, 659–666 (1967).Google Scholar
  20. 20.
    G. A. Cohen, “FASOR — a second generation shell of revolution code,” Comput. Struct.,10, Nos. 1–2, 301–309 (1979).Google Scholar
  21. 21.
    G. A. Teters, R. B. Rikards, and V. L. Narusberg, Optimization of Laminar-Composite Shells [in Russian], Riga (1978).Google Scholar
  22. 22.
    H. K. Brewer, “Tire stress and deformation from composite theory,” Tire Sci. Tech.,1, No. 1, 47–76 (1973).Google Scholar
  23. 23.
    A. V. Karmishin, V. A. Myaskovets, V. I. Myachenkov, and A. N. Frolov, Statics and Dynamics of Thin-Wall Shell Designs [in Russian], Moscow (1975).Google Scholar
  24. 24.
    P. M. Naghdi, “On the theory of thin elastic shells,” Q. Appl. Math.,14, No. 4, 369–380 (1957).Google Scholar
  25. 25.
    V. V. Novozhilov, Fundamentals of the Nonlinear Theory of Elasticity [in Russian], Leningrad (1948).Google Scholar
  26. 26.
    P. M. Ogibalov and M. A. Koltunov, Shells and Plates [in Russian], Moscow (1969).Google Scholar
  27. 27.
    E. Reissner, “On the theory of bending of elastic plates,” J. Math. Phys.,23, No. 4, 184–191 (1944).Google Scholar
  28. 28.
    S. K. Godunov, “On the numerical solution of edge problems for systems of ordinary linear differential equations,” Usp. Mat. Nauk,16, No. 3, 171–174 (1961).Google Scholar
  29. 29.
    V. L. Buderman, R. L. Guslitser, S. P. Zakharov, B. V. Nenakhov, I. I. Seleznev, and S. M. Tsukerberg, Truck Tires [in Russian], Moscow (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • É. I. Grigolyuk
    • 1
  • G. M. Kulikov
    • 1
  1. 1.Moscow Automechanical InstituteUSSR

Personalised recommendations