Journal of Comparative Physiology A

, Volume 161, Issue 5, pp 711–714 | Cite as

Crcadian rhythms — endogenous or exogenous?

  • John Brady
Article

Summary

A recent paper (Martin and Martin 1987) proposes that the 24-h behavioural rhythmicity of honeybees is not controlled by an endogenous (i.e. circadian) clock but merely exogenously by, in particular, the bees' responses to diel changes in the local geomagnetic field. The evidence derives from experiments involving the transplantation of the mushroom bodies from bees trained to feed at noon in Seattle, USA, into untrained bees tested at Würzburg, West Germany. This and earlier evidence is here re-examined and shown to be consistent with the more accepted explanation of endogenous circadian rhythmicity — while acknowledging the probability that bees do use local magnetic time cues as entraining Zeitgebers.

Keywords

Circadian Rhythmicity Early Evidence Mushroom Body Local Magnetic Time Accepted Explanation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown FA Jr (1965) A unified theory for biological rhythms. Rhythmic duplicity and the genesis of lscirca’ periodisms. In: Aschoff J (ed) Circadian clocks. North-Holland, Amsterdam, pp 231–261Google Scholar
  2. Daan S (1982) Circadian rhythms in animals and plants. In: Brady J (ed) Biological timekeeping. C.U.P., Cambridge London, pp 11–32Google Scholar
  3. Deguchi T (1979) A circadian oscillator in cultured cells of chicken pineal gland. Nature (Lond) 282:94–96Google Scholar
  4. Ewert J-P (1980) Neuroethology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. Jacklet JW (1982) Circadian clock mechanisms. In: Brady J (ed) Biological timekeeping. C.U.P., Cambridge London, pp 173–188Google Scholar
  6. Korall H, Martin H (1987) Responses of bristle field sensilla inApis mellifica to geomagnetic and astrophysical fields. J Comp Physiol A 161:1–22Google Scholar
  7. Martin H, Lindauer M (1977) Der Einfluβ des Erdmagnetfeldes auf die Schwereorientierung der Honigbiene (Apis mellifica). J Comp Physiol 122:145–187Google Scholar
  8. Martin H, Lindauer M, Martin U (1983) ‘Zeitsinn’ und Aktivitätsrhythmus der Honigbiene — endogen oder exogen gesteuert? SB Bayer Akad Wissensch Math Nat Kl 1983:1–41Google Scholar
  9. Martin H, Martin U (1987) Transfer of a time-signal isochronous with local time in translocation experiments to the geographical longitude. J Comp Physiol A 160:3–9Google Scholar
  10. Martin U, Martin H, Lindauer M (1978) Transplantation of a time-signal in honeybees. J Comp Physiol 124:193–201Google Scholar
  11. Medugorac I, Lindauer M (1967) Das Zeitgedächtnis der Bienen unter dem Einfluβ von Narkose und von sozialen Zeitgebern. Z Vergl Physiol 55:450–474Google Scholar
  12. Moore D, Rankin MA (1985) Circadian locomotor rhythms in individual honeybees. Physiol Entomol 10:191–197Google Scholar
  13. Renner M (1957) Neue Versuche über den Zeitsinn der Honigbiene. Z Vergl Physiol 40:85–118Google Scholar
  14. Spangler HG (1973) Role of light in altering the circadian oscillations of the honey bee. Ann Entomol Soc Am 66:449–451Google Scholar
  15. Truman JW (1971) The role of the brain in the ecdysis rhythm of silkmoths: Comparison with the photoperiodic termination of diapause. In: Menaker M (ed) Biochronometry. National Academy of Sciences, Washington, pp 483–504Google Scholar
  16. Zimmerman NH, Menaker M (1979) The pineal gland: A pacemaker within the circadian system of the house sparrow. Proc Natl Acad Sci USA 76:999–1003Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • John Brady
    • 1
  1. 1.Department of Pure and Applied BiologyImperial CollegeAscotEngland

Personalised recommendations