Skip to main content
Log in

High-temperature linear kinetics of FeS formation and reduction in COS-CO-CO2 gas mixtures

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The linear kinetics of the monosulfide scale formation and reduction according to the overall reaction Fe(s) + COS(g) = FeS(s) + CO(g) in COS-CO-CO2 gas mixtures was studied in the temperature range 750–910† C by a thermogravimetric technique. The validity of the linear rate law is limited to short times of exposure and relatively low partial pressures of COS. A proposed model for the sulfidation reaction implies that both adsorption of COS and dissociation of adsorbed COS are involved in the rate-limiting steps. For the reverse reaction it is suggested that both adsorption of CO and recombination of adsorbed CO with sulfur either in an adsorbed state or incorporated in the sulfide lattice are the rate-controlling steps. The theory of absolute reaction rates was applied to the proposed reaction model. Activation enthalpies and entropies for both the sulfidation and the reduction process were derived. From these data standard enthalpy and entropy changes for the overall reaction were evaluated and found to be in close agreement with thermochemical data from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Brun, K. Dalatun, Å. Sterten, and R. Tunold,Trans. Met. Soc. AIME 245, 671 (1969).

    Google Scholar 

  2. H. Nakai,Tetsu to Hagane 47, 1613 (1961).

    Google Scholar 

  3. C. W. Tuck,Anti-Corrosion 15, 4 (1968).

    Google Scholar 

  4. A. Dravnieks and C. H. Samans,J. Electrochem. Soc. 105, 183 (1958).

    Google Scholar 

  5. E. W. Haycock,J. Electrochem. Soc. 106, 764 (1959).

    Google Scholar 

  6. H. Arm, P. Delahay, C. Hudgins, F. Hügli, L. Hulett, and M. Qureshi,J. Electrochem. Soc. 107, 264 (1960).

    Google Scholar 

  7. F. Jamin-Changeart and S. Talbot-Besnard,Compt. Rend. 258, 1978, 4745 (1964).

    Google Scholar 

  8. E. T. Turkdogan,Trans. Met. Soc. AIME 242, 1665 (1968).

    Google Scholar 

  9. W. L. Worrel and E. T. Turkdogan,Trans. Met. Soc. AIME 242, 1673 (1968).

    Google Scholar 

  10. S. Zelouf and G. Simkovich, in High-Temperature Metallic Corrosion of Sulfur and its Compounds, Z. A. Foroulis, ed. (The Electrochem. Soc. Inc., New York, 1970), p. 119.

    Google Scholar 

  11. G. Simkovich,Werkstoffe Korrosion 21, 973 (1970).

    Google Scholar 

  12. K. Hauffe and A. Rahmel,Z. Phys. Chem. 199, 152 (1952).

    Google Scholar 

  13. R. A. Meussner and C. E. Birchenall,Corrosion 13, 79 (1957).

    Google Scholar 

  14. P. V. Gel'd and A. K. Krasovskaya,Russ. J. Phys. Chem. (Eng.) 34, 756 (1960).

    Google Scholar 

  15. S. Mrovec,Bull. Akad. Polon Sci. 15, 521 (1967).

    Google Scholar 

  16. J. Romanskii,Corrosion Sci. 8, 67 (1968).

    Google Scholar 

  17. J. C. Ward,Rev. Pure Appl. Chem. 20, 175 (1970).

    Google Scholar 

  18. T. Rosenqvist,J. Iron Steel Inst. 176, 37 (1954).

    Google Scholar 

  19. M. Nagamori and M. Kameda,Trans. Japan Inst. Met. 9, 187 (1968).

    Google Scholar 

  20. W. Burgman, G. Urbain, and M. G. Frohberg,Mem. Sci. Rev. Met. 65, 567 (1968).

    Google Scholar 

  21. A. Rahmel and J. A. Gonzales,Werkstoffe Korrosion 21, 925 (1970).

    Google Scholar 

  22. L. S. Darken and R. W. Gurry,J. Am. Chem. Soc. 67, 1398 (1945).

    Google Scholar 

  23. S. Glasstone, K. J. Laidler, and H. Eyring,The Theory of Rate Processes (McGraw-Hill Book Co., New York, 1941), Chapter VII.

    Google Scholar 

  24. JANAF Thermochemical Tables, Dow Chemical Co., Thermal Laboratory, Midland, Michigan (1966).

  25. O. Kubaschewski, E. LL. Evans, and C. B. Alcock,Metallurgical Thermochemistry (Pergamon Press, London, 1967), 4th ed., pp. 397–398.

    Google Scholar 

  26. C. B. Alcock and F. D. Richardson,Nature 168, 661 (1951).

    Google Scholar 

  27. K. Sudo,Sci. Rept. Inst. Tohoku Univ., Ser. A.2, 312 (1950).

    Google Scholar 

  28. M. Nagamori,Can. Met. Quart. 9, 531 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haugen, S., Sterten, A. High-temperature linear kinetics of FeS formation and reduction in COS-CO-CO2 gas mixtures. Oxid Met 3, 545–555 (1971). https://doi.org/10.1007/BF00605002

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00605002

Keywords

Navigation