Journal of Comparative Physiology A

, Volume 154, Issue 2, pp 157–165 | Cite as

Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora

  • R. C. Hardie


  1. 1.

    Intracellular recordings were made from R7 and R8 photoreceptors in dorsal marginal ommatidia in the fliesCalliphora erythrocephala andMusca domestica.

  2. 2.

    Intracellular injection of Lucifer yellow identified the cells as the specialised marginal photoreceptors described by Wada (1974b) and showed that they project long visual fibres to the medulla (Fig. 1).

  3. 3.

    Both R7 and R8 in these ommatidia are pure ultraviolet receptors. The spectral sensitivity function peaks between 330 and 350 nm and is similar to that recorded from so called 7p cells (Fig. 3).

  4. 4.

    These cells are also extremely sensitive to the e-vector of polarized light. Each responds maximally to light parallel to its microvillar orientation. Polarization sensitivity (PS) depended to some extent on the intensity of the test light, at moderate light intensities PS values as high as 19∶1 were measured (Fig. 6). At low light levels the response to the non-preferred e-vector orientation was hyperpolarizing suggesting a negative electrical interaction between cells R7 and R8 (Figs. 4 and 5).

  5. 5.

    Typical of other R7 and R8 cells the responses of the marginal R7 and R8 cells were noisy indicative of large voltage gain per quantum, and the input resistances of the cells were very high (up to 190 megohm).

  6. 6.

    Absolute sensitivity (defined as the reciprocal of the intensity required to generate 50% maximal response) and angular sensitivity in the marginal R7 cells both varied considerably, and were not significantly different from values measured from R1–6 cells in the same region.

  7. 7.

    The visual axes of the marginal photoreceptors were directed between 12° and 24° into the contralateral visual field.



Voltage Gain Lucifer Yellow Polarization Sensitivity Absolute Sensitivity Test Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Polarization sensitivity


Axial peak sensitivity at 50% response level


halfwidth of the angular sensitivity function


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beersma DGM, Stavenga DG, Kuiper JW (1977) Retinal lattice visual field and binocularities in flies. J Comp Physiol 119:207–220Google Scholar
  2. Bernard GD, Wehner R (1977) Functional similarities between polarization vision and colour vision. Vision Res 17:1019–1028Google Scholar
  3. Burkhardt D (1962) Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp Soc Exp Biol 16:86–109Google Scholar
  4. Franceschini N, Hardie RC (1980) In vivo recovery of dye-injected photoreceptor cells in the retina of the flyMusca domestica. J Physiol (Lond) 301:59PGoogle Scholar
  5. Franceschini N, Kirschfeld K, Minke B (1981a) Fluorescence of photoreceptor cells observed in vivo. Science 213:1264–1267Google Scholar
  6. Franceschini N, Hardie RC, Ribi W, Kirschfeld K (1981b) Sexual dimorphism in a photoreceptor. Nature 291:241–244Google Scholar
  7. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Goldsmith TH (1975) The polarization sensitivity dichroic absorption paradox in arthropod photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 392–409Google Scholar
  9. Hardie RC (1979) Electrophysiological analysis of the fly retina. I. Comparative properties of R1–6 and R7 and R8. J Comp Physiol 129:19–33Google Scholar
  10. Hardie RC, Kirschfeld K (1983) Ultraviolet sensitivity of fly photoreceptors R7 and R8: evidence for a sensitising function. Biophys Struct Mech 9:171–180Google Scholar
  11. Hardie RC, Franceschini N, McIntyre PD (1979) Electrophysiological analysis of the fly retina. II. Spectral and polarization sensitivity in R7 and R8. J Comp Physiol 133:23–39Google Scholar
  12. Hardie RC, Franceschini N, Ribi W, Kirschfeld (1981) Distribution and properties of sex-specific photoreceptors in the flyMusca domestica. J Comp Physiol 145:139–152Google Scholar
  13. Harris WA, Stark WS, Walker JA (1976) Genetic dissection of the photoreceptor system in the compound eye ofDrosophila melanogaster. J Physiol 256:415–439Google Scholar
  14. Horridge GA, Marcelja L, Jahnke R, Matic T (1983) Single electrode studies on the retina of the butterflyPapilio. J Comp Physiol 150:270–294Google Scholar
  15. Kirschfeld K (1969) Absorption properties of photopigments in single rods, cones and rhabdomeres. In: Reichardt W (ed) Processing of optical data by organisms and machines. Academic Press, New York London, pp 116–136Google Scholar
  16. Kirschfeld K (1973) Vision of polarized light. Symposium proceedings of the 4th International Biophysical Congress Moscow, pp 289–296Google Scholar
  17. Kirschfeld K (1979) The function of photostable pigments in fly photoreceptors. Biophys Struct Mech 5:117–128Google Scholar
  18. Kirschfeld K, Franceschini N (1968) Optische Eigenschaften der Ommatidien im Komplexauge vonMusca. Kybernetik 5:47–52Google Scholar
  19. Kirschfeld K, Feiler R, Franceschini N (1978) A photostable pigment within the rhabdomere of fly photoreceptor no. 7. J Comp Physiol 125:275–284Google Scholar
  20. Labhart T (1980) Specialised photoreceptors at the dorsal rim of the honeybee's compound eye: polarizational and angular sensitivity. J Comp Physiol 141:19–30Google Scholar
  21. Laughlin SB (1976) The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J Comp Physiol 111:221–247Google Scholar
  22. McCann GD, Arnett DW (1972) Spectral and polarization sensitivity of the dipteran visual system. J Gen Physiol 59:534–558Google Scholar
  23. McIntyre PD, Kirschfeld K (1981) Absorption properties of a photostable pigment (P456) in rhabdomere 7 of the fly. J Comp Physiol 143:3–15Google Scholar
  24. Menzel R (1975) Polarization sensitivity in insect eyes with fused rhabdoms. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 372–387Google Scholar
  25. Menzel R, Snyder AW (1974) Polarized light detection in the bee,Apis mellifera. J Comp Physiol 88:247–270Google Scholar
  26. Moody MF, Parriss JR (1961) The discrimination of polarized light byOctopus: a behavioural and morphological study. Z Vergl Physiol 44:268–291Google Scholar
  27. Räber F (1979) Retinotopographie und Sehfeldtopologie des Komplexauges vonCataglyphis bicolor (Formicidae, Hymenoptera) und einiger verwandter Formiciden-Arten. Dissertation Universität ZürichGoogle Scholar
  28. Shaw SR (1969) Sense cell structure and interspecies comparisons of polarized-light absorption in arthropod compound eyes. Vision Res 9:1031–1040Google Scholar
  29. Shaw SR (1975) Retinal resistance barriers and electrical lateral inhibition. Nature 255:480–483Google Scholar
  30. Smola U, Meffert P (1979) The spectral sensitivity of the visual cells R7 and R8 in the eye of the blowflyCalliphora erythrocephala. J Comp Physiol 133:41–52Google Scholar
  31. Snyder AW (1973) Polarization sensitivity of individual retinula cells. J Comp Physiol 83:331–360Google Scholar
  32. Snyder AW, Laughlin SB (1975) Dichroism and absorption by photoreceptors. J Comp Physiol 100:101–116Google Scholar
  33. Snyder AW, McIntyre P (1975) Polarization sensitivity of twisted fused rhabdoms. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 388–391Google Scholar
  34. Sommer EW (1979) Untersuchungen zur topographischen Anatomie der Retina und zur Sehfeldtopologie im Auge der Honigbiene,Apis mellifera (Hymenoptera). Dissertation. Universität ZürichGoogle Scholar
  35. Stowe S (1980) Spectral sensitivity and retinal pigment movement in the crabLeptograpsus variegatus (Fabricius). J Exp Biol 87:73–98Google Scholar
  36. Wada S (1974a) Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77:87–125Google Scholar
  37. Wada S (1974b) Spezielle randzonale Ommatidien vonCalliphora erythrocephala Meig. (Diptera: Calliphoridae): Architektur der zentralen Rhabdomeren-Kolumne und Topographie im Komplexauge. Int J Insect Morphol Embryol 3:397–424Google Scholar
  38. Waterman TH (1980) Polarization sensitivity. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6B). Springer, Berlin Heidelberg New York, pp 283–469Google Scholar
  39. Wehner R (1982) Himmelsnavigation bei Insekten. Neujahrsblatt der Naturforschenden Gesellschaft in Zürich (ed. H.H. Bosshard) Naturforschende Gesellschaft in ZürichGoogle Scholar
  40. Wehner R, Duelli P (1971) The spatial orientation of desert antsCataglyphis bicolor. Experientia 27:1364–1366Google Scholar
  41. Wolf R, Gebhardt B, Gademann R, Heisenberg M (1980) Polarization sensitivity of course control inDrosophila melanogaster. J Comp Physiol 139:177–191Google Scholar
  42. Wunderer H, Smola U (1982a) Fine structure of ommatidia at the dorsal eye margin ofCalliphora erythrocephala Meigen (Diptera: Calliphoridae): An eye region specialised for the detection of polarized light. Int J Insect Morphol Embryol 11:25–38Google Scholar
  43. Wunderer H, Smola U (1982b) Morphological differentiation of the central visual cells R7/R8 in various regions of the blowfly eye. Tissue Cell 12:341–358Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • R. C. Hardie
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations