Mechanics of Composite Materials

, Volume 18, Issue 2, pp 127–130 | Cite as

Temperature dependence of mechanical properties of boron fibers

  • V. S. Erasov
  • E. N. Pirogov
  • V. P. Konoplenko
  • V. A. Akimkin
  • A. P. Marukhin
  • A. M. Tsirlin
  • E. A. Shchetilina
  • N. M. Balagurova
Article

Conclusions

  1. 1.

    Within the 293–873°K temperature range both bare and SiC-coated boron fibers deform elastically while retaining their rather excellent strength characteristics.

     
  2. 2.

    Residual elongation appears within the 873–973°K temperature range and reaches its maximum at 1073°K. Gradual enbrittlement of the material at further rising temperature is due to corrosion and structural change.

     
  3. 3.

    An analysis of changes in the ultimate strength and in the defects initiating fracture of fibers with rising temperature has revealed that the temperature dependence of the strength is determined essentially by the redistribution of internal stresses within the 293–873°K range and by corrosion, as well as by structural changes in boron fibers within the 873–1473°K range.

     
  4. 4.

    The modulus of elasticity of tested fibers decreases with rising temperature, almost linearly, over the 293–1473°K range. Empirical relations have been obtained for the temperature dependence of the modulus of elasticity.

     

Keywords

Mechanical Property Boron Structural Change Internal Stress Ultimate Strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. L. Svetlov, Yu. V. Levinskii, and T. B, Zaikovskaya, “Effect of heat treatment on strength of boron fibers,” in: Composite Metallic Materials [in Russian], Moscow (1972), pp. 91–95.Google Scholar
  2. 2.
    V. N. Antsiferov, A. F. Zhigach, A. V. Lyudagovskii, A. I. Rabinovich, and A. M. Tsirlin, “Physicomechanical properties of boron fibers bare and with SiC coating at high temperatures,” Mekh. Polim., No.4, 726–728 (1977).Google Scholar
  3. 3.
    R. D. Veltri and F. S. Galasso, “High-temperature strength of boron, SiC-coated boron, silicon carbide, stainless steel, and tungsten fibers,” J. Am. Ceram. Soc., Discussion and Notes,54, No. 6, 47–48 (1971).Google Scholar
  4. 4.
    H. R. Thornton, “Fabrication of metal-matrix composite materials,” J. Compos. Mater.,2, No. 1, 32–42 (1968).Google Scholar
  5. 5.
    I. L. Svetlov, V. M. Chubarov, and T. I. Bulygina, “Tensile strength of unidirectionally oriented boron-aluminum composite materials,” in: Composite Metallic Materials [in Russian], Moscow (1972), pp. 82–90.Google Scholar
  6. 6.
    Dzh. M. Lifshits, “Retarded fracture of fibrous composites,” in: Composite Materials. Fracture and Fatigue [in Russian], Vol. 5, Moscow (1978), pp. 267–332.Google Scholar
  7. 7.
    V. S. Erasov, E. N. Pirogov, and V. P. Konoplenko, “Apparatus for tensile testing of reinforcing fibers at elevated temperatures,” Zavod. Lab., No. 6, 555–556 (1980).Google Scholar
  8. 8.
    L. M. Ustinov, “Effect of brittle coatings on strength of boron fibers,” Fiz. Khim. Obrab. Mater., No. 5, 82–86 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • V. S. Erasov
    • 1
    • 2
  • E. N. Pirogov
    • 1
    • 2
  • V. P. Konoplenko
    • 1
    • 2
  • V. A. Akimkin
    • 1
    • 2
  • A. P. Marukhin
    • 1
    • 2
  • A. M. Tsirlin
    • 1
    • 2
  • E. A. Shchetilina
    • 1
    • 2
  • N. M. Balagurova
    • 1
    • 2
  1. 1.Moscow Institute of Engineering PhysicsUSSR
  2. 2.State Scientific-Research Institute of PhysicsTechnology of Elemento-organic CompoundsMoscow

Personalised recommendations