Skip to main content
Log in

The influence of an intermediate annealing treatment on the oxidation of copper and nickel

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A study has been made of the effects of an intermediate, isothermal annealing treatment in argon on the oxidation kinetics of copper and nickel in 1 atm oxygen at 800 and 1100°C, respectively, using a semiautomatic microbalance. Changes in scale morphology and composition have been investigated using various physical techniques. The outer CuO layer formed on copper during oxidation dissociates very rapidly on annealing to give CU2O and oxygen since the partial pressure of oxygen in the gas is below the dissociation pressure of CuO but above that of Cu2O at 800°C. The CuO layer is quickly re-formed on reoxidation in oxygen. There are relatively few other changes in the oxide morphologies of either metal during annealing, although the small grains present in the scale adjacent to the metal after oxidation are able to grow. During reoxidation both metals show a reduction in oxidation rate constant because of the decrease in total cation vacancy concentration in the scale and the reduced cation vacancy gradient across the scale brought about by the reduction in oxygen partial pressure at the oxide-gas interface during annealing. The reoxidation rate constants following annealing approach those recorded prior to annealing as the equilibrium cation vacancy levels in the scales are reestablished in the oxidizing environment. Rosenberg's method for analysis of the kinetics of reoxidation has enabled the equilibrium concentrations and diffusion coefficients of cation vacancies in CU2O and NiO during oxidation in 1 atm oxygen at the appropriate temperatures to be estimated approximately. These show reasonable agreement with literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Rosenburg,J. Electwchem. Soc. 107, 795 (1960).

    Google Scholar 

  2. E. Fryt, S. Mrowec, and T. Walec,Oxid. Met. 7, 117 (1973).

    Google Scholar 

  3. E. Fryt,Oxid. Met. 10, 311 (1976).

    Google Scholar 

  4. E. Fryt,Oxid. Met. 12, 139 (1978).

    Google Scholar 

  5. W. B. Sharp and D. Mortimer,J. Scient. Inst. (Ser. 2)1, 843 (1968).

    Google Scholar 

  6. F. Maak and C. M. Sellars,J. Scient. Instrun. 42, 900 (1965).

    Google Scholar 

  7. F. H. Stott and G. C. Wood,Corros. Sci. 19, 961 (1979).

    Google Scholar 

  8. F. H. Stott, Ph.D. thesis, University of Manchester (1970).

  9. R. L. Levin and J. B. Wagner, Jr.,J. Electrochem. Soc. 108, 954 (1961).

    Google Scholar 

  10. T. Yamashina and T. Nagamatsuya,J. Electrochem. Soc. 111, 249 (1064).

    Google Scholar 

  11. J. L. Meijering and M. L. Verheyke,Acta Metall. 7, 331 (1959).

    Google Scholar 

  12. F. N. Rhines and R. G. Connell, Jr.,J. Electrochem. Soc. 124, 1122 (1977).

    Google Scholar 

  13. V. I. Arkharov, S. I. Ivanovskoya, and A. S. Krowonosova,Fiz. Metal. Metalloved,22, 884 (1966).

    Google Scholar 

  14. J. S. Van der Broek and J. L. Meijering,Acta Metall. 16, 375 (1968).

    Google Scholar 

  15. A. Atkinson, R. I. Taylor, and P. D. Goode,Oxid. Met. in press.

  16. A. Bruckman,Corros. Sci. 7, 51 (1967).

    Google Scholar 

  17. F. N. Rhines and J. S. Wolf,Metall. Trans. 1, 1701 (1970).

    Google Scholar 

  18. R. L. Pastorek and R. A. Rapp,Trans. Am. Inst. Min. Metall. Pet. Eng. 245, 1711 (1969).

    Google Scholar 

  19. C. B. Alcock and P. B. Brown,Met. Sci. J. 3, 116 (1969).

    Google Scholar 

  20. Y. D. Tretyakov and R. A. Rapp,Trans. Am. Inst. Min. Metall. Pet. Eng. 245, 1235 (1969).

    Google Scholar 

  21. M. O'Keefe and W. J. Moore,J. Chem. Phys. 36, 3009 (1962).

    Google Scholar 

  22. C. Wagner and H. Hammen,Z. Phys. Chem. B40, 197 (1938).

    Google Scholar 

  23. S. Mrowec, A. Stoklosa, and K. Godlewski,Bull. Acad. Polon. Sci., Ser. Sci. Chim. 22, 47 (1974).

    Google Scholar 

  24. K. Godlewski, S. Mrowec, and A. Stoklosa,Bull. Acad. Polon. Sci, Ser. Sci. Chim. 22, 55 (1974).

    Google Scholar 

  25. W. J. Moore and B. Selikson,J. Chem. Phys. 19, 1539 (1951).

    Google Scholar 

  26. J. B. Price and J. B. Wagner, Jr.,Z. Phys. Chem. 49, 257 (1966).

    Google Scholar 

  27. N. G. Eror and J. B. Wagner, Jr.Phys. Status. Solidi 35, 641 (1969).

    Google Scholar 

  28. R. Uno,J. Phys. Soc. Jpn. 22, 1502 (1967).

    Google Scholar 

  29. G. H. Meier and R. A. Rapp,Z. Phys. Chem. 74, 168 (1971).

    Google Scholar 

  30. C. M. Osborn and R. W. Vest,J. Phys. Chem. Solids. 32, 1331 (1971).

    Google Scholar 

  31. J. Christain and W. Gilbreath,Oxid. Met. 9, 1 (1975).

    Google Scholar 

  32. Y. D. Tretyakov, V. F. Komarov, N. A. Prosvirina, and I. B. Kutsenok,J. Solid State Chem. 5, 157 (1972).

    Google Scholar 

  33. M. Yoshimura, A. Reviolevschi, and J. Castaing,J. Mater. Sci. 11, 384 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, G.C., Stott, F.H. The influence of an intermediate annealing treatment on the oxidation of copper and nickel. Oxid Met 14, 187–205 (1980). https://doi.org/10.1007/BF00604563

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00604563

Key words

Navigation