Earth, Moon, and Planets

, Volume 64, Issue 2, pp 145–154 | Cite as

Limiting wave growth for electron cyclotron waves

  • D. P. Singh
  • U. P. Singh
  • R. P. Singh


Quasilinear weak diffusion theory presented by Kennel and Petschek (1966) and advanced by Schulz and Davidson (1988) is further extended to put an upper limit on the growth of electron cyclotron waves. It is shown that the power gain of whistler mode electron cyclotron wave (other than plasmaspheric hiss) can not exceed 40 dB. Inside the outer radiation belt, the upper limit of temporal wave growth is ≈350 rad s−1 and normalised wave growth is 0.017. The limits are independent of the kind of the electron diffusion and are applicable for on the equator/off the equator locations of wave-particle interactions.


Radiation Mode Electron Radiation Belt Electron Cyclotron Normalise Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angerami, J. J.: 1966, ‘A Whistler Study of the Distribution of Thermal Electrons in the Magnetosphere’, Tech. Rep. No. 3412-7, Radiosci. Lab., Stanford University, Calif.Google Scholar
  2. Angerami, J. J. and Carpenter, D. L.: 1966, ‘Whistler Studies of the Plasmapause in the Magnetosphere, 2 Equatorial Density and Total Tube Electron Content Near the Knee in Magnetospheric Ionization’,J. Geophys. Res. 71, 711.Google Scholar
  3. Brice, N. and Lucas, C.: 1971, ‘Influence of Magnetospheric Convection and Polar Wind on Loss of Electrons from the outer Radiation Belt’,J. Geophys. Res. 76, 900.Google Scholar
  4. Carlson, C. R., Helliwell, R. A. and Carpenter, D. L.: 1985, ‘Variable Frequency VLF Signals in the Magnetosphere: Associated Phenomena and Plasma Diagnostics’,J. Geophys. Res. 90, 1507.Google Scholar
  5. Carlson, C. R., Helliwell, R. A. and Inan, U. S.: 1990, ‘Space Time Evolution of Whistler Mode Wave Growth in the Magnetosphere’,J. Geophys. Res. 95, 15073.Google Scholar
  6. Chang, D. C. D. and Helliwell, R. A.: 1979, ‘Emissiom Triggering in the Magnetosphere by Controlled Interruption of Coherent VLF Signals’,J. Geophys. Res. 84, 7170.Google Scholar
  7. Church, C. R. and Thorne, R. M.: 1983, ‘On the Origin of Plasmaspheric Hiss: Ray Path Integrated Amplification’,J. Geophys. Res. 88, 7941.Google Scholar
  8. Cornwall, J. M.: 1966, ‘Micropulsation and Outer Radiation Zone’,J. Geophys. Res. 71, 2185.Google Scholar
  9. Cornilleau-Wehrlin, N., Solomon, J., Korth, A. and Kremser, G.: 1985, ‘Experimental Study of Relationship Between Energetic Electrons and ELF Waves Observed on Board GEOS: A Support to Quasilinear Theory’,J. Geophys. Res. 90, 4141.Google Scholar
  10. Dowden, R. L., McKay, A. D., Amon, L. E. S., Koons, H. C. and Dazey, M. H.: 1978, ‘Linear and Nonlinear Amplification in the Magnetosphere During a 6.6 kHz Transmission’,J. Geophys. Res. 83, 169.Google Scholar
  11. Etcheto, J., Gendrin, R., Solomon, J. and Roux, A.: 1973, ‘A Self Consistent Theory of Magnetospheric ELF Hiss’,J. Geophys. Res. 78, 8150.Google Scholar
  12. Haerendel, G.: 1970, ‘On the Balance Between Radial and Pitch Angle Diffusion’, in Particles and Fields in the Magnetosphere (Ed. BM McCormac), D. Reidel, Dordrecht, 416–428.Google Scholar
  13. Helliwell, R. A.: 1965, ‘Whistlers and Related Ionospheric Phenomena’, Stanford Univ. Press Stanford, Calif.Google Scholar
  14. Helliwell, R. A.: 1967, ‘A Theory of Discrete VLF Emissions from the Magnetosphere’,J. Geophys. Res. 72, 4773.Google Scholar
  15. Helliwell, R. A. and Katsufrakis, J. P.: 1974, ‘VLF Wave Injection into the Magnetosphere from Siple Station Antarctica’,J. Geophys. Res. 79, 2511Google Scholar
  16. Kennel, C. F. and Petschek, H. E.: 1966, ‘Limit on Stably Trapped Particle Fluxes’,J. Geophys. Res. 71, 1.Google Scholar
  17. Inan, U. S.: 1987, ‘Gyroresonant Pitch Angle Scattering by Coherent and Incoherent Whistler Mode Waves in the Magnetosphere’,J. Geophys. Res. 92, 127.Google Scholar
  18. Paschal, E. W. and Helliwell, R. A.: 1984, ‘Phase Measurements of Whistler Mode Signals from the Siple VLF Transmitter’,J. Geophys. Res. 89, 1667.Google Scholar
  19. Paschal, E. W.: 1988, ‘Phase Measurement of Very Low Frequency Signals from the Magnetosphere’, Ph.D. Thesis, Stanford Univ. Calif.Google Scholar
  20. Rietveld, M. T., Dowden, R. L. and Amon, L. E. S.: 1978, ‘Micropulsations Observed by Whistler Mode Transmissions’,Nature 276, 165.Google Scholar
  21. Roederer, J. G.: 1970, ‘Dynamics of Geomagnetically Trapped Radiation’, J. G. Roederer and J. Zahringer (eds.), Springer-Verlag, Berlin. 22.Google Scholar
  22. Roux, A. and Solomon, J.: 1971, ‘Self Consistent Solution of the Quasilinear Theory: Application to the Spectra Shape and Intensity of VLF Waves in the Magnetosphere’,J Atmos. Terres. Phys. 33, 1457.Google Scholar
  23. Sazhin, S. S.: 1984, ‘A Model for Hiss Type Mid Latitude VLF Emissions’,Planet. and Space Sci. 32, 1263.Google Scholar
  24. Schulz, M. and Davidson, G. T.: 1988, ‘Limiting Energy Spectrum of a Saturated Radiation Belt’,J. Geophys. Res. 93, 59.Google Scholar
  25. Singh, D. P.: 1991, ‘Strong Diffusion of Resonant Electrons by VLF Waves’,Ind. J. Radio Space Phys. 20, 424.Google Scholar
  26. Singh, D. P.: 1992, ‘L-dependance of Trapped Electron Diffusion by ELF Waves’,Ind. J. Radio Space Phys. 21, 250.Google Scholar
  27. Solomon, J., Cornilleau-Wehrlin, N., Korth, A. and Kremser, G.: 1988, ‘An Experimental Study of ELF/VLF Hiss Generation in the Earth's Magnetosphere’,J. Geophys. Res. 93, 1839.Google Scholar
  28. Solomon, J., Cornilleau-Wehrlin, N., Korth, A. and Kremser, G.: 1989, ‘Plasma Waves and Instabilities at Comets and in the Magnetospheres’, B. T. Tsurutani and H. Oya (eds.),Physical Monograph 53,published by American Geophysical Union, pp. 119–133.Google Scholar
  29. Stiles, G. S. and Helliwel, R. A.: 1977, ‘Stimulated Growth of Coherent VLF Waves in the Magnetosphere’,J. Geophys. Res. 82, 523.Google Scholar
  30. Thorne, R. M. and Barfield, J. N.: 1976, ‘Further Observational Evidence Regarding the Origin of Plasmaspheric Hiss’,J. Geomag. Geoelectr. 3, 29.Google Scholar
  31. Thorne, R. M., Church, S. and Gorney, D. J.: 1979, ‘On the Origin of Plasmaspheric Hiss: The Importance of Wave Propagation and the Plasmapause’,J. Geophys. Res. 84, 5241.Google Scholar
  32. Villalon, E., Burke, W. J., Rothwell,P. L. and Silevitch, M. B.: 1989, ‘Quasilinear Wave Particle Interactions in the Earth's Radiation Belt’,J. Geophys. Res. 94, 15243.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • D. P. Singh
    • 1
  • U. P. Singh
    • 2
  • R. P. Singh
    • 2
  1. 1.Physics DepartmentGovernment College AdampurHisarIndia
  2. 2.Atmospheric Research Lab, Physics DepartmentBanaras Hindu UniversityVaranasiIndia

Personalised recommendations