Journal of Applied Spectroscopy

, Volume 32, Issue 6, pp 568–573 | Cite as

Amplification coefficient and saturation parameter of a CO2 waveguide laser

  • V. G. Doronin
  • V. I. Novikov
  • V. A. Stepanov


Analytical Chemistry Molecular Structure Amplification Coefficient Saturation Parameter Waveguide Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. C. Cohen, “Waveguide CO2 laser gain; dependence on gas kinetic and discharge properties;” IEEE Quant. Electron.,QE-12, No. 4, 237–244 (1976).Google Scholar
  2. 2.
    V. V. Grigo'yants, B. A. Kuzyakov, and A. M. Sinitsyn, “The amplification coefficient of a waveguide CO2 laser,” Kvantovaya Elektron.,4, No. 7, 1482–1486 (1977).Google Scholar
  3. 3.
    A. M. Sinitsyn, “Population and amplification coefficient in a waveguide CO2 laser,” Kvantovaya Elektron.,5, No. 10, 2179–2185 (1978).Google Scholar
  4. 4.
    V. V. Grigor'yants, B. A. Kuzyakov, and A. M. Sinitsyn, “Saturation in waveguide CO2 lasers,” Kvantovaya Elektron.,6, No. 2, 288–294 (1979).Google Scholar
  5. 5.
    V. V. Grigor'yants, B. A. Kuzyakov, and A. M. Sinitsyn, “Saturation parameter of a wave-guide CO2 laser,” Kvantovaya Elektron.,6, No. 4, 759–764 (1979).Google Scholar
  6. 6.
    Demarna, “Continuously operating CO2 power lasers,” TIIER,61, 54–74 (1973).Google Scholar
  7. 7.
    H. Shirahata and T. Fojioka, “Dependence of gain on tube radius in CO2 waveguide lasers,” J. Appl. Phys.,46, No. 6, 2627–2628 (1975).Google Scholar
  8. 8.
    A. A. Mikaberidze, V. I. Ochkin, and N. N. Sobolev, “The population of lower laser levels in a CO2 laser,” Kvantovaya Elektron., No. 1 (13), 41–46 (1973).Google Scholar
  9. 9.
    V. G. Doronin and V. I. Novikov, “Calculation of the characteristics of a laser using a mixture of CO2 isotopes,” Zh. Prikl. Spektrosk.,28, No. 1, 50–56 (1978).Google Scholar
  10. 10.
    A. J. Laderman and S. R. Byron, “Temperature rise and radial profiles in CO2 lasers,” J. Appl. Phys.,42, No. 8, 3138–3144 (1971).Google Scholar
  11. 11.
    W. J. Wiegend, M. C. Fowler, and J. A. Benda, “Carbon monoxide formation in CO2 lasers,” Appl. Phys. Lett.,16, No. 6, 237–239 (1970).Google Scholar
  12. 12.
    O. P. Judd, “The effect of gas mixture on the electron kinetics in the electrical CO2 gas laser,” J. Appl. Phys.,45, No. 10, 4572–4575 (1974).Google Scholar
  13. 13.
    A. S. Biryukov, V. K. Konyukhov, A. I. Lukovnikov, and R. I. Serikov, “Relaxation of the vibrational energy of the (00°1) level of CO2 molecules,” Zh. Eksp, Teor, Fiz.,66, No. 4, 1248–1257 (1974).Google Scholar
  14. 14.
    A. N. Vargin, V. V. Gogokhiya, V. K. Konyukhov, and L. M. Pasynkova, “Rates of resonant vibrational exchange between a CO2 molecule and N2 and CO molecules,” Kvantovaya Elektron.,3, No. 1, 216–219 (1976).Google Scholar
  15. 15.
    M. Kovacs, R. Rao, and A. Javan, “Study of diffusion and wall deexcitation probability of 00°1 state in CO2,” J. Chem. Phys.,48, No. 7, 3339–3341 (1968).Google Scholar
  16. 16.
    E. N. Bazarov, G. A. Gerasimov, and Yu. I. Posudin, “Investigation of the characterisrtics of a frequency-tunable high-pressure waveguide CO2 laser,” Kvantovaya Elektron.,2, No. 6, 1160–1163 (1975).Google Scholar
  17. 17.
    B. I. Stepanov (editor), Computational Methods of Lasers [in Russian], Vol. 1, Nauka i Tekhnika, Minsk (1968).Google Scholar
  18. 18.
    R. L. Abrams, “Broadening coefficients for the P(20) CO2 laser transition,” Appl. Phys. Lett.,25, No. 10, 609–611 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • V. G. Doronin
  • V. I. Novikov
  • V. A. Stepanov

There are no affiliations available

Personalised recommendations