Mechanics of Composite Materials

, Volume 19, Issue 2, pp 169–175 | Cite as

Topological aspects of the statistical theory of the strength of composites

  • T. L. Chelidze
Article
  • 19 Downloads

Keywords

Statistical Theory Topological Aspect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. N. Zhurkov and B. N. Narzullaev, “Time dependence of the strength of solids,” Zh. Tekh. Fiz.,23, 1677 (1953).Google Scholar
  2. 2.
    V. R. Regel', A. I. Slutsker, and É. E. Tomshevskii, Kinetic Nature of the Strength of Solids [in Russian], Moscow (1974).Google Scholar
  3. 3.
    V. P. Tamuzh and V. S. Kuksenko, Micromechanics of Failure of Polymer Materials [in Russian], Riga (1978).Google Scholar
  4. 4.
    H. Liebowitz (ed.), Fracture, Vol. 2, Academic Press, London (1969).Google Scholar
  5. 5.
    W. Weibull, “A statistical distribution function of wide application,” J. Appl. Mech.,18, 293 (1951).Google Scholar
  6. 6.
    S. D. Volkov, Statistical Theory of Strength [in Russian], Sverdlovsk, Moscow (1960).Google Scholar
  7. 7.
    V. V. Bolotin, “Mathematical and experimental models of fracture processes,” Probl. Prochn., No. 2, 13 (1971).Google Scholar
  8. 8.
    D. Vere-Jones, “A branching model for crack propagation,” Pure Appl. Geophys.,114, 711 (1976).Google Scholar
  9. 9.
    V. A. Petrov, “Mechanism and kinetics of microfracture,” Fiz. Tverd. Tela,21, 3681 (1979).Google Scholar
  10. 10.
    L. M. Kachanov, Fundamentals of Fracture Mechanics [in Russian], Moscow (1974).Google Scholar
  11. 11.
    Yu. N. Rabotnov, Creep Problems in Structural Members, North-Holland (1969).Google Scholar
  12. 12.
    V. K. Shante and S. Kirkpatrick, “An introduction to percolation theory,” Adv. Phys.,20, 325 (1971).Google Scholar
  13. 13.
    B. I. Shklovskii and A. L. Éfros, Electronic Properties of Alloyed Semiconductors [in Russian], Moscow (1979).Google Scholar
  14. 14.
    T. L. Chelidze, “A percolation model of fracture of solids and prediction of earthquakes,” Dokl. Akad. Nauk SSSR,246, 51 (1979).Google Scholar
  15. 15.
    T. L. Chelidze, “A model of the process of fracture of solids,” Fiz. Tverd. Tela,22, 2865 (1980).Google Scholar
  16. 16.
    G. E. Pike and C. H. Seager, “Percolation and conductivity,” Phys. Rev., B,10, No. 4, 1421 (1974).Google Scholar
  17. 17.
    S. Chandrasekhar, in: Selected Papers on Noise and Stochastic Processes, New York (1954).Google Scholar
  18. 18.
    J. R. Rice and G. F. Rosengren, “Plane strain deformation near a crack tip,” J. Mech. Phys. Solids,16, 13 (1968).Google Scholar
  19. 19.
    T. D. Shermergor, Theory of Elasticity of Microheterogeneous Media [in Russian], Moscow (1977).Google Scholar
  20. 20.
    R. L. Salganik, “Mechanics of bodies with a large number of cracks,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 149 (1973).Google Scholar
  21. 21.
    L. E. Nielsen, “General equation for the elastic moduli of composite materials,” J. Appl. Phys.,41, 4626 (1970).Google Scholar
  22. 22.
    G. T. Hann and A. R. Rosenfield, “Relations between microstructure and the fracture toughness,” in: 3rd ICR Conference, Vol. 1 (1973), pp. 111–211.Google Scholar
  23. 23.
    W. D. Kingery, Introduction to Ceramics, Wiley, Chichester (1976).Google Scholar
  24. 24.
    B. I. Edelson and W. M. Baldwin, “The effect of second phases on the mechanical properties of alloys,” Trans. ASM,55, 230 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • T. L. Chelidze
    • 1
  1. 1.Institute of GeophysicsAcademy of Sciences of Gruzinian SSRTbilisi

Personalised recommendations