Oxidation of Metals

, Volume 14, Issue 2, pp 147–165 | Cite as

High-temperature oxidation of Ti-4.32 wt.% Nb alloy

  • Y. S. Chen
  • C. J. Rosa


The oxidation kinetics of Ti-4.32 wt.% Nb (2.27 at.%) alloy in either air or oxygen under 1 bar pressure have been investigated in the temperature range of 1255–1471 K. For oxidation in oxygen the kinetics follow consecutively decreasing parabolic rate laws. The kinetics become nonparabolic after prolonged oxidation in air. X-ray data reveal the presence of TiO2 (rutile) as the main oxide. The presence of Ti2O, δ-TiN, and ɛ-TiN is found on the metal surface after oxidation in air. Microhardness and electron microprobe measurements are used to determine Ti, Nb, O, and N profiles across the oxidized alloy. The oxygen diffusion coefficient in the alloy can be expressed byD=65.6 exp(−234.3/RT) with the activation energy in kilojoules per mole. The oxidation behavior of the alloy is explained.

Key words

oxidation in air or oxygen kinetics oxide identification oxygen diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. W. Maynor, Jr., B. R. Barrett, and R. E. Swift, WADCTech. Rep. 54-109, Project No. 7351, March (1955).Google Scholar
  2. 2.
    P. Kofstad, Report from Central Inst. for Industrial Research, Blindern, Oslo, to WADC, ASTIA Document No. Ad 130779 (1957).Google Scholar
  3. 3.
    K. Hauffe,Oxidation of Metals (Plenum, New York, 1965), pp. 14ff, 221.Google Scholar
  4. 4.
    O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths, London, 1962), pp. 90ff, 117ff.Google Scholar
  5. 5.
    J. S. Anderson and A. S. Khan,J. Less-Common Met. 22, 219 (1970).Google Scholar
  6. 6.
    P. Kofstad,J. Phys. Chem. Solids 23, 1579 (1962).Google Scholar
  7. 7.
    T. Hurlen,J. Inst. Met. 89, 128 (1960–1961).Google Scholar
  8. 8.
    D. S. Tannhauser,Solid State Commun. 1, 223 (1963).Google Scholar
  9. 9.
    P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972), p. 137ff.Google Scholar
  10. 10.
    Y. S. Chen, M.S. thesis, University of Cincinnati, Cincinnati (1974).Google Scholar
  11. 11.
    P. Kofstad, P. B. Anderson, and O. J. Krudtaa,J. Less-Common Met. 3, 89 (1961).Google Scholar
  12. 12.
    A. E. Palty, H. Margolin, and J. P. Nielsen,Trans. Am. Soc. Met. 46, 312 (1954).Google Scholar
  13. 13.
    D. J. Maykuth, H. R. Ogden, and R. I. Jaffe, DMIC Report 136 A (1960).Google Scholar
  14. 14.
    J. Stringer,Acta Metall. 8, 758 (1960).Google Scholar
  15. 15.
    M. Simnad, Aija Spilners, and O. Katz,Trans. AIME 1, 645 (1955).Google Scholar
  16. 16.
    P. Kofstad,J. Less-Common Met. 12, 449 (1967).Google Scholar
  17. 17.
    D. R. Miller,Trans. Am. Inst. Min. Metall. Pet. Eng. 224, 275 (1962).Google Scholar
  18. 18.
    G. R. Wallwork and A. E. Jenkins,J. Electrochem. Soc. 106, 10 (1959).Google Scholar
  19. 19.
    H. J. Goldschmidt,Metallurgia 62, 211 (1960).Google Scholar
  20. 20.
    R. S. Roth and L. W. Coughanour,J. Res. Nat. Bur. Stand. 55, 209 (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Y. S. Chen
    • 1
  • C. J. Rosa
    • 1
  1. 1.Department of Materials Science and Metallurgical EngineeringUniversity of CincinnatiCincinnati

Personalised recommendations