Mechanics of Composite Materials

, Volume 16, Issue 2, pp 202–206 | Cite as

Approximate analysis of nonlinear transversely isotropic triple-layer plates

  • É. I. Grigolyuk
  • G. M. Kulikov


Approximate Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    É. I. Grigolyuk and G. M. Kulikov, “Approximate analysis of anisotropic triple-layer plates with finite deflection,” Mekh. Kompozitn. Mater., No. 1, 42–48 (1980).Google Scholar
  2. 2.
    É. I. Grigolyuk, “Finite deflections of triple-layer shells with a stiff filler,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 1, 26–34 (1958).Google Scholar
  3. 3.
    É. I. Grigolyuk and P. P. Chulkov, Stability and Vibrations of Triple-Layer Shells [in Russian], Moscow (1973).Google Scholar
  4. 4.
    H. M. Berger, “A new approach to the analysis of large deflections of plates,” J. Appl. Mech.,22, No 4 465–472 (1955).Google Scholar
  5. 5.
    I. G. Bubnov, “Stresses in vessel sheaths due to water pressure,” in: Morskoi Sb.,311, No. 8, 117–143;312, No. 9, 111–141;312, No. 10, 119–139;313, No. 12, 107–141 (1902); special print, St. Petersburg (1904) [reprinted: I. G. Bubnov, Works on the Theory of Plates, Moscow (1953), pp. 11–100].Google Scholar
  6. 6.
    T. Wah, “Large-amplitude flexural vibration of rectangular plates,” Int. J. Mech. Sci.,5, No 6 425–438 (1963).Google Scholar
  7. 7.
    C. P. Vendhan, “A study of Berger equations applied to nonlinear vibrations of elastic plates,” Int. J. Mech. Sci.,17, No 7, 461–468 (1975).Google Scholar
  8. 8.
    N. Kamiya, “Governing equations for large deflections of sandwich plates,” AIAA J.,14, No. 2, 250–253 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • É. I. Grigolyuk
    • 1
  • G. M. Kulikov
    • 1
  1. 1.Moscow Institute of Automotive MechanicsUSSR

Personalised recommendations