Oxidation of Metals

, Volume 16, Issue 3–4, pp 243–252 | Cite as

Prediction of the global volatilization rate of gas-metal-alloy reaction systems—Method of calculation

  • Tai -Kang Liu
  • Renato G. Bautista


The methods and equations used to predict the global volatilization rate of high temperature gas-solid reactions have been presented. The procedure includes the formulation of Bartlett's model, determining the equilibrium constant, and the estimation of the nonequilibrium properties of gases at high temperatures. For the alloy system forming the protective Cr2O3 layer, the global volatilization rate can be estimated with a modified Tedmon's model using a nonlinear regression technique.

Key words

Gas-solid reaction volatilization rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. C. Graham and H. H. Davis,J. Am. Ceram. Soc. 54, 89 (1971).Google Scholar
  2. 2.
    R. J. Fruehan,Metall. Trans. 3, 2585 (1972).Google Scholar
  3. 3.
    R. J. Fruehan and L. T. Martonik,Metall. Trans. 4, 2789 (1973).Google Scholar
  4. 4.
    K. Reinhold, and K. Hauffe,J. Electrochem. Soc. 124, 875 (1977).Google Scholar
  5. 5.
    R. W. Bartlett,J. Electrochem. Soc. 114, 547 (1967).Google Scholar
  6. 6.
    M. H. Brown, W. B. Delong, and J. R. Auld,Ind. Engng. Chem. 39, 838 (1947).Google Scholar
  7. 7.
    J. D. McKinley, Jr., and K. E. Shuler,J. Chem. Phys. 28, 1207 (1958).Google Scholar
  8. 8.
    C. S. Tedmon, Jr.,J. Electrochem. Soc. 113, 766 (1966).Google Scholar
  9. 9.
    J. R. Welty, C. E. Wicks, and R. G. Wilson,Fundamentals of Momentum Heat and Mass Transfer (John Wiley & Sons, New York, 1969).Google Scholar
  10. 10.
    C. N. Satterfields,Mass Transfer in Heterogeneous Catalysis (M.I.T. Press, Cambridge, Mass. 1970), p. 80.Google Scholar
  11. 11.
    H. Kato, N. Nishiwaki, and M. Hirata,Int. J. Heat Mass Transfer 11, 1117 (1968.Google Scholar
  12. 12.
    J. H. Perry,Chemical Engineers Handbook, 5th ed. (McGraw-Hill Co., New York, 1973).Google Scholar
  13. 13.
    O. Kubashewski, E. L. Evans, and C. B. Alcock,Metallurgical Thermochemistry, 4th ed, (Pergamon Press, New York, 1967).Google Scholar
  14. 14.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot,Transport Phenomena (John Wiley & Sons, New York) 1960).Google Scholar
  15. 15.
    P. D. Neufeld, A. R. Janzen, and R. A. Aziz,J. Chem. Phys. 57, 1100 (1972).Google Scholar
  16. 16.
    R. C. Reid and T. K. Sherwood,The Properties of Gases and Liquids, 2nd ed. (McGraw-Hill Co., New York, 1966).Google Scholar
  17. 17.
    T. K. Liu and R. G. Bautista,Oxid. Met. 15, 277 (1981).Google Scholar
  18. 18.
    T. K. Liu, Ph.D. thesis, Iowa State University, 1979.Google Scholar
  19. 19.
    D. Caplan and M. Cohen,J. Electrochem. Soc. 108, 438 (1961).Google Scholar
  20. 20.
    W. C. Hagel,Trans. Am. Soc. Met. 56, 583 (1963).Google Scholar
  21. 21.
    I. A. Menzies and D. Mortimer,Corros. Sci. 6, 517 (1966).Google Scholar
  22. 22.
    C. A. Stearns, F. J. Kohl, and G. C. Fryburg,J. Electrochem. Soc. 121, 945 (1974).Google Scholar
  23. 23.
    C. S. Giggins and F. S. Pettit,Metall. Trans. 2, 1071 (1971).Google Scholar
  24. 24.
    J. Stringer,Oxid. Met. 5, 49 (1972).Google Scholar
  25. 25.
    J. E. Croll and G. R. Wallwork,Oxid. Met. 4, 121 (1972).Google Scholar
  26. 26.
    H. Lewis,Metallurgia 83, 3 (1971).Google Scholar
  27. 27.
    G. M. Ecer and G. H. Meier,Scr. Metall. F. 7, 1189 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Tai -Kang Liu
    • 1
  • Renato G. Bautista
    • 2
  1. 1.Chung Shan Institute of Science and TechnologyTaoyuanTaiwan, Republic of China
  2. 2.Ames Laboratory USDOE and Department of Chemical EngineeringIowa State UniversityAmes

Personalised recommendations