Advertisement

Oxidation of Metals

, Volume 12, Issue 6, pp 473–485 | Cite as

The influence of a titanium nitride dispersion on the oxidation behavior of 20%Cr-25%Ni stainless steel

  • H. E. Evans
  • D. A. Hilton
  • R. A. Holm
  • S. J. Webstert
Article

Abstract

The oxidation behavior of 20%Cr-25%Ni stainless steels and a similar but stronger alloy containing a dispersion of titanium nitride particles has been studied over the temperature range 1023 to 1173°K. The dispersion-strengthened steel oxidized slightly more slowly than its dispersion-free counterpart at 1023°K, but above this temperature it was inferior in terms of gross weight gain. The parabolic growth kinetics of the chromic oxide layer in each alloy were similar, however, with an activation energy compatible with the rate-controlling step being chromium ion diffusion across the oxide. The evidence suggests that the role of the dispersed phase is to produce an oxide of finer grain size than that of the standard steel, which increases the rate of oxygen transport inward. The consequent formation of internal oxide increases the tendency for oxide rupture and spalling with subsequent enhanced local attack. This leads to the observed higher overall weight gains compared with the dispersion-free alloy.

Key words

stainless steels high-temperature oxidation chromium diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Evans, R. Hales, D. A. Hilton, R. A. Holm, G. Knowles, and R. J. Pearce, Proc. BNES Conf. Corr. Steels in CO2, Reading (1974), p. 369.Google Scholar
  2. 2.
    H. E. Evans, D. A. Hilton, and R. A. Holm,Oxid. Met. 10, 149 (1976).Google Scholar
  3. 3.
    H. E. Evans, D. A. Hilton, and R. A. Holm,Oxid. Met. 11, 1 (1977).Google Scholar
  4. 4.
    C. S. Giggins and F. S. Pettit,Metall. Trans. 2, 1071 (1971).Google Scholar
  5. 5.
    J. Stringer, B. A. Wilcox, and R. I. Jaffee,Oxid. Met. 5, 11 (1972).Google Scholar
  6. 6.
    D. G. Barnes, J. M. Calvert, K. A. Hay, and D. G. Lees,Phil. Mag. 28, 1303 (1973).Google Scholar
  7. 7.
    P. Skeldon, M.Sc. thesis, University of Manchester (1976).Google Scholar
  8. 8.
    F. N. Rhines and J. S. Wolf,Metall. Trans. 1, 1701 (1970).Google Scholar
  9. 9.
    D. Caplan, A. Harvey, and M. Cohen,Corros. Sci. 3, 161 (1963).Google Scholar
  10. 10.
    D. Caplan and G. I. Sproule,Oxid. Met. 9, 459 (1975).Google Scholar
  11. 11.
    E. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 104, 334 (1957).Google Scholar
  12. 12.
    W. C. Hagel and A. U. Seybolt,J. Electrochem. Soc. 108, 1146 (1961).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • H. E. Evans
    • 1
  • D. A. Hilton
    • 1
  • R. A. Holm
    • 1
  • S. J. Webstert
    • 2
  1. 1.Berkeley Nuclear LaboratoriesCentral Electricity Generating BoardBerkeleyUK
  2. 2.Springfields Nuclear Power Development LaboratoriesU.K.A.E.A.PrestonUK

Personalised recommendations