Oxidation of Metals

, Volume 15, Issue 1–2, pp 77–100 | Cite as

The kinetics of the oxidation of aluminum-zinc alloys in oxygen at high temperature

  • A. J. Brock
  • G. R. Irani
  • M. J. Pryor


The oxidation behavior of high-purity aluminum-zinc alloys has been studied at temperatures from 475 to 575°C in dry oxygen at a pressure of 76 Torr. The oxidation product is duplex in nature consisting of both amorphous and crystalline γ-Al2O3. The crystalline γ-Al2O3 grows as roughly cylindrical crystals of constant thickness at any given temperature and alloy content; the crystals grow into the metal from the amorphous oxide-metal interface by inward diffusion of oxygen through the overlying amorphous film. The amorphous oxide film existing between the crystals of γ-Al2O3 grows with accurately parabolic kinetics throughout the temperature and alloy composition range. The amorphous oxide existing above the crystalline phase grows at a lower rate because of the additional resistance to cation diffusion conferred by the underlying crystalline phase. Increasing the zinc content of the alloy from 0.1 to 1.0% causes a reduction in the crystal nucleation density and an increase in the radial growth rate. The presence of Zn has no effect on the growth kinetics of the amorphous oxide between the crystals of γ-Al2O3.

Key words

aluminum-zinc alloy oxidation kinetics γ-Al2O3 film morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Cabrera and N. F. Mott,Rep. Prog. Phys. 12, 163 (1948).Google Scholar
  2. 2.
    N. Cabrera and J. Hamon,Rep. Prog. Phys. 11, (1947).Google Scholar
  3. 3.
    W. W. Smeltzer,J. Electrochem. Soc. 103, 209 (1956).Google Scholar
  4. 4.
    E. A. Gulbransen and W. S. Wysong,J. Phys. Colloid. Chem. 57, 1987 (1947).Google Scholar
  5. 5.
    D. W. Aylmore, S. J. Gregg, and W. B. Jepson,J. Inst. Met. 88, 205 (1959–1960).Google Scholar
  6. 6.
    M. S. Hunter and P. Fowle,J. Electrochem. Soc. 103, 482 (1956).Google Scholar
  7. 7.
    C. N. Cochran and W. C. Sleppy,J. Electrochem. Soc. 103, 482 (1956).Google Scholar
  8. 8.
    A. F. Beck, M. A. Heine, E. J. Caule, and M. J. Pryor,Corros. Sci. 7, 1 (1967).Google Scholar
  9. 9.
    J. Herenguel and J. Boghen,Rev. Metall. Paris 51, 265 (1954).Google Scholar
  10. 10.
    A. J. Brock and M. J. Pryor,Corros. Sci. 13, 199 (1973).Google Scholar
  11. 11.
    A. J. Brock and M. A. Heine,J. Electrochem Soc. 119, 1124 (1972).Google Scholar
  12. 12.
    T. J. Gray,The Defect Solid State (Interscience, New York, 1957), Chap. X11.Google Scholar
  13. 13.
    A. F. Beck,J. Appl. Phys. 36, 2944 (1965).Google Scholar
  14. 14.
    U. R. Evans,Trans. Faraday Soc. 41, 365 (1945).Google Scholar
  15. 15.
    A. J. Brock,J. Electrochem. Soc. 117, 549 (1970).Google Scholar
  16. 16.
    T. J. Gray, personal communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • A. J. Brock
    • 1
  • G. R. Irani
    • 1
  • M. J. Pryor
    • 1
  1. 1.Metals Research LaboratoriesOlin CorporationNew Haven

Personalised recommendations