Oxidation of Metals

, Volume 13, Issue 3, pp 237–244 | Cite as

Mechanism of the simultaneous formation of oxide and sulfide at the scale surface during the oxidation of a pure metal in mixed atmospheres

  • F. Gesmundo
Article

Abstract

During the reaction of a pure metal with complex atmospheres containing both oxygen and sulfur, the formation of sulfide mixed with oxide is often observed at high temperature, contradicting thermodynamic predictions. The mechanism proposed so far to explain the formation of a duplex scale at the scale surface assumes a change in composition of the gas phase in a boundary layer next to the scale-gas interface and a reaction of the metal with the molecules of the two elements. This model is shown to be unable to explain the observed amounts of the less stable phase and the reaction rates when sulfur dioxide is the prevailing reacting species and is substituted by the assumption of a direct reaction with the SO2 molecules. The thermodynamic equivalence of the two approaches is also pointed out.

Key words

corrosion of pure metals simultaneous oxidation and sulfidation reaction mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Birks and N. Tattam,Corros. Sci. 10, 857 (1970).Google Scholar
  2. 2.
    T. Flatley and N. Birks,J. Iron Steel Inst. 209, 523 (1971).Google Scholar
  3. 3.
    M. R. Wootton and N. Birks,Corros. Sci. 12, 829 (1972).Google Scholar
  4. 4.
    G. Romeo and H. S. Spacil, inHigh Temperature Gas-Metal Reactions in Mixed Environments, S. A. Jansson and Z. A. Foroulis, eds. (Metall. Soc. A.I.M.E., New York, 1973), p. 299.Google Scholar
  5. 5.
    F. S. Petitt, J. A. Goebel, and G. W. Goward,Corros. Sci. 9, 903 (1969).Google Scholar
  6. 6.
    A. Rahmel,Corros. Sci. 13, 125 (1973).Google Scholar
  7. 7.
    A. Rahmel,Oxid. Met. 9, 401 (1975).Google Scholar
  8. 8.
    N. Birks, inHigh Temperature Gas-Metal Reactions in Mixed Environments, S. A. Jansson and Z. A. Foroulis, eds. (Metall. Soc. A.I.M.E., New York, 1973), p. 322.Google Scholar
  9. 9.
    S. Mrowec, J. C. Colson, G. Pawlowsky, and J. Podhorodecki,Bull. Soc. Chim. 11, 4103 (1972).Google Scholar
  10. 10.
    B. Chatterjee and A. J. Dowell,Corros. Sci. 15, 639 (1975).Google Scholar
  11. 11.
    P. Barret and B. Dupuisson,Rev. Int. Hautes Temp. Refract 14, 145 (1977).Google Scholar
  12. 12.
    C. B. Alcock, M. G. Hocking, and S. Zador,Corros. Sci. 9, 111 (1969).Google Scholar
  13. 13.
    A. Rahmel,Werkst. Korros. 23, 272 (1972).Google Scholar
  14. 14.
    T. K. Ross,Corros. Sci. 5, 327 (1965).Google Scholar
  15. 15.
    R. J. Hussey and M. Cohen,Corros. Sci. 11, 699 (1971).Google Scholar
  16. 16.
    P. Kofstad,High Temperature Oxidation of Metals (Wiley, New York, 1966), Chap. V.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • F. Gesmundo
    • 1
  1. 1.Centro Studi di Chimica e Chimica Fisica Applicata alle Caratteristiche di Impiego dei Materiali del C.N.R.GenovaItaly

Personalised recommendations