Skip to main content
Log in

Reequilibrium kinetics of NiO-Cr2O3 solid solutions

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Electrical conductivity has been measured to monitor the reequilibration kinetics for single crystals of NiO-Cr2O3 solid solutions. It has been found that the rate for the reduction process is higher than that for the oxidation runs, thus indicating that the obtained kinetic data are not purely bulk controlled. The following expressions for the apparent chemical diffusion coefficient have been obtained within the temperature range 900–1200°C and oxygen partial pressure range 1–10−5 atm:

$$\begin{gathered} \tilde D_{1 red} = 1.22 \times 10^{ - 2} exp \left( {\frac{{24,420 \pm 1210 cal/mole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \tilde D_{1 oxid}^* = 1.44 \times 10^{ - 2} exp \left( {\frac{{27,340 \pm 700 cal/mole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \tilde D_{2 red} = 2.29 \times 10^{ - 2} exp \left( {\frac{{25,340 \pm 2230 calmole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \tilde D_{2 oxid}^* = 0.109 exp \left( {\frac{{29,610 \pm 3200 cal/mole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \tilde D_{3 red} = 3.16 \times 10^{ - 2} exp \left( {\frac{{26,020 \pm 2430 cal/mole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \tilde D_{3 oxid}^* = 0.202 exp \left( {\frac{{31,500 \pm 2640 cal/mole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \end{gathered} $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Wagner, Jr.,Proceedings of the Symposium on Mass Transport in Oxides, NBS Special Publication (1968), pp. 65–76.

  2. P. E. Childs and J. B. Wagner, Jr.,Proceedings of the International Conference on Heterogeneous Kinetics at Elevated Temperature, Philadelphia 1969 (Plenum, New York, 1970), pp. 269–342.

    Google Scholar 

  3. P. E. Childs, D. W. Laub, and J. B. Wagner, Jr.,Proc. Br. Ceram. Soc. 19, 29 (1971).

    Google Scholar 

  4. J. Nowotny and J. B. Wagner, Jr.,J. Am. Ceram. Soc. 56, 397 (1973).

    Article  CAS  Google Scholar 

  5. J. M. Wimmer, R. N. Blumenthal, and J. Bransky,J. Phys. Chem. Solids 36, 269 (1975).

    Article  CAS  Google Scholar 

  6. J. Dereń, Z. M. Jarzebski, S. Mrowec, and T. Walec,Bull. Acad. Pol. Sci., Ser. Sci. Chim. 19, 153 (1971).

    Google Scholar 

  7. J. B. Price and J. B. Wagner, Jr.,Z. Phys. Chem., Neue Folge 49, 257 (1966).

    CAS  Google Scholar 

  8. J. Notwotny and A. Sadowski,J. Am. Ceram. Soc. in press.

  9. R. Farhi and G. Petot-Ervas,J. Phys. Chem. Solids 39, 1169 (1978).

    Article  CAS  Google Scholar 

  10. J. B. Price, Ph.D. thesis, Northwestern University, Evanston, Ill. (1968).

    Google Scholar 

  11. L. W. Laub, Ph.D. thesis, Northwestern University, Evanston, Ill. (1971).

    Google Scholar 

  12. J. Nowotny and J. B. Wagner, Jr., unpublished data.

  13. A. V. Krilova, L. Ya. Margolis, G. I. Tschizhikova,Kinet. Katal. 6, 854 (1965).

    Google Scholar 

  14. J. Dereń, J. Nowotny, and J. Ziółkowski,Bull. Acad. Pol. Sci., Ser. Sci. Chim. 16, 45 (1968).

    Google Scholar 

  15. A. Bielański and J. Dereń,Proceedings of the International Symposium on Electronic Phenomena in Adsorption and Catalysis on Semiconductors Volkenstein, ed. (Mir, Moscow, 1969), pp. 227–251.

    Google Scholar 

  16. J. Dereń, J. Nowotny, G. Rog, B. Russer, and J. Sloczynski,J. Catal. 34, 124 (1974).

    Article  Google Scholar 

  17. S. P. Mitoff,J. Chem. Phys. 35, 882 (1961).

    Article  CAS  Google Scholar 

  18. H. G. Sockel and B. Ilschner,Z. Phys. Chem., Neue Folge 74, 284 (1971).

    CAS  Google Scholar 

  19. G. H. Meier and R. A. Rapp,Z. Phys. Chem., Neue Folge 74, 168 (1971).

    CAS  Google Scholar 

  20. C. M. Osburn and R. W. Vest,J. Phys. Chem. Solids 32, 1331 (1970).

    Google Scholar 

  21. S. Pizzini and R. Morlotti,J. Electrochem. Soc. 114, 1179 (1967).

    CAS  Google Scholar 

  22. J. E. Stroud and J. Bransky,J. Chem. Phys. 58, 1263 (1973).

    Article  Google Scholar 

  23. M. Parlinska, Ph.D. thesis, Academy of Mining and Metallurgy, Kraköw (1977).

    Google Scholar 

  24. R. A. Perkins and R. A. Rapp,Trans. Metall. Soc. A.I.M.E. 4, 193 (1973).

    CAS  Google Scholar 

  25. R. Farhi and G. Petot-Ervas,J. Phys. Chem. Solids 39, 1175 (1978).

    Article  CAS  Google Scholar 

  26. H. J. Grabke,Ann. N.Y. Acad. Sci. 213, 110 (1973).

    CAS  Google Scholar 

  27. J. Nowotny and J. B. Wagner, Jr., submitted for publication.

  28. A. Sadowski, PhD. thesis, Academy of Mining and Metallurgy, Kraków (1978).

    Google Scholar 

  29. J. Nowotny, J. Oblakowski, A. Sadowski, and J. B. Wagner, Jr., submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowotny, J., Obłakowski, J., Sadowski, A. et al. Reequilibrium kinetics of NiO-Cr2O3 solid solutions. Oxid Met 14, 437–448 (1980). https://doi.org/10.1007/BF00603611

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603611

Key words

Navigation