Skip to main content
Log in

Low-temperature oxidation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Low-temperature oxidation is a reaction, occurring at or below room temperature, between a solid and a gas. It usually involves the combination of oxygen with metals, and it has the greatest commercial impact in the presence of moisture, as in corrosion. Cabrera and Mott put forward a theory of low-temperature oxidation, based on the assumption that cation migration occurs under the influence of a potential built up across the growing oxide film. Recent experimental results require that this theory be expanded to explain recent observations such as anion migration during oxide growth and the transition from the initial chemisorbed monolayer to a bulk, threedimensional oxide. The additional ideas put forward in the present paper may be summarized as follows. Low-temperature oxidation is controlled by the nature of the oxide; whether it is a network former or a modifier. A period of fast, linear oxidation is followed by a slow logarithmic reaction whose rate, in turn, can increase if the oxide film crystallizes to form grain boundaries. The initial fast oxidation is a continuation of the chemisorption process. Place exchange (anions and cations interchanging positions) occurs when the energy due to the image force of an oxygen ion is greater than the bond energy holding the ion in place. A stable film forms when this bond energy is greater than the image force energy. The oxygen ions formed on the oxide surface then set up a potential across the film. This potential provides the driving force for continued reaction. Oxide growth during this later stage is a slow, logarithmic process. A barrier to ion transport exists at the gas-oxide interface in the case of anion migration and at the metal-oxide interface in the case of cation migration. In both cases, the field built up across the oxide lowers the barrier sufficiently so that ion migration can occur. Network modifiers allow cation migration. The reaction rate is sensitive to crystallographic orientation of the metal, but not to oxygen pressure. A constant voltage is maintained across the film, so that the Cabrera-Mott theory explains the logarithmic kinetics. Network-forming oxides allow onion migration. The number of anions, and hence, the rate of reaction, is sensitive to oxygen pressure, but not crystallographic orientation of the metal substrate. Since the potential is a result of the mobile anions, the film tends to grow under constant field. The logarithmic kinetics then must be explained by an increasing activation energy for ion transport, as proposed by Eley and Wilkinson. The logarithmic growth rate can be increased by the presence of water vapor if the water introduces “dangling” bonds into an oxide network structure. Crystallization of the oxide film also increases its rate of growth and results in the formation of oxide islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Cabrera and N. F. Mott,Rept. Progr. Phys. 12, 163 (1948–1949).

    Google Scholar 

  2. N. Cabrera,Phil. Mag. 40, 175 (1949).

    Google Scholar 

  3. K. Hauffe and B. Ilschner,Z. Elektrochem. 58, 382 (1954).

    Google Scholar 

  4. A. T. Fromhold, Jr. and E. L. Cook,J. Chem. Phys. 44, 4564 (1966);Phys. Rev. 158, 600 (1967).

    Google Scholar 

  5. J. E. Boggio and R. C. Plumb,J. Chem. Phys. 44, 1081 (1966).

    Google Scholar 

  6. D. D. Eley and P. R. Wilkinson,Proc. Roy. Soc. (London) Ser. A 254, 327 (1960).

    Google Scholar 

  7. C. T. Kirk, Jr. and E. E. Huber, Jr.,Surface Sci. 9, 217 (1968).

    Google Scholar 

  8. N. F. Mott,Trans. Faraday Soc. 35, 1175 (1939);36, 472 (1940);43, 429 (1947).

    Google Scholar 

  9. M. A. H. Lanyon and E. M. W. Trapnell,Proc. Roy. Soc. (London) Ser. A 227, 387 (1955).

    Google Scholar 

  10. W. Rühl,Z. Physik 176, 409 (1963).

    Google Scholar 

  11. F. Jona,J. Phys. Chem. Solids 28, 2155 (1967).

    Google Scholar 

  12. J. W. May and L. H. Germer,Surface Sci. 11, 443 (1968).

    Google Scholar 

  13. G. K. L. Cranstoun and J. S. Anderson,Nature 219, 365 (1968).

    Google Scholar 

  14. S. Nakamura and E. W. Müller,J. Appl. Phys. 36, 3634 (1965).

    Google Scholar 

  15. G. Ehrlich,1961 Trans. 8th Vacuum Symp. and 2nd Intern. Cong. (Pergamon Press, New York, 1962), p. 126.

    Google Scholar 

  16. J. J. Lander,Surface Sci. 1, 125 (1964).

    Google Scholar 

  17. D. Brennan, D. O. Hayward, and B. M. W. Trapnell,Proc. Roy. Soc. (London) Ser. A 256, 81 (1960).

    Google Scholar 

  18. D. Lichtman and T. R. Kirst,Phys. Letters 20, 7 (1966).

    Google Scholar 

  19. T. E. Madey and J. T. Yates,Surface Sci. 11, 327 (1968).

    Google Scholar 

  20. A. E. Lee and B. A. Pethica,Proc. Roy. Soc. (London) Ser. A 309, 141 (1969).

    Google Scholar 

  21. J. A. Becker and C. D. Hartman,J. Phys. Chem. 57, 153 (1953).

    Google Scholar 

  22. Ken-Ichi Tanaka and K. Tamaru,J. Catalysis 2, 366 (1963).

    Google Scholar 

  23. A. J. Pignocco and G. E. Pellissier,Surface Sci. 7, 261 (1967).

    Google Scholar 

  24. C. M. Quinn and M. W. Roberts,Trans. Faraday Soc. 60, 899 (1964).

    Google Scholar 

  25. E. E. Huber, Jr. and C. T. Kirk, Jr.,Surface Sci. 5, 447 (1966).

    Google Scholar 

  26. M. W. Roberts and B. R. Wells,Surface Sci. 15, 325 (1969).

    Google Scholar 

  27. J. M. Saleh, B. R. Wells, and M. W. Roberts,Trans. Faraday Soc. 60, 1865 (1964).

    Google Scholar 

  28. J. C. Riviere,Brit. J. Appl. Phys. 15, 1341 (1964).

    Google Scholar 

  29. J. C. Riviere,Brit. J. Appl. Phys. 16, 1507 (1965).

    Google Scholar 

  30. M. W. Roberts and B. R. Wells,Surface Sci. 8, 453 (1967).

    Google Scholar 

  31. N. F. Mott and R. J. Watts-Tobin,Electrochim. Acta 4, 79 (1961).

    Google Scholar 

  32. Kuan-Han Sun,J. Am. Ceram. Soc. 30, 277 (1947).

    Google Scholar 

  33. F. Ordway,Science 143, 800 (1964).

    Google Scholar 

  34. H. Rawson,Inorganic Glass-Forming Systems (Academic Press London, 1967) pp. 1–30.

    Google Scholar 

  35. H. Rawson,Inorganic Glass-Forming Systems (Academic Press London, 1967) pp. 31–44.

    Google Scholar 

  36. H. Rawson,Inorganic Glass-Forming Systems (Academic Press; London, 1967) pp. 109–113.

    Google Scholar 

  37. W. H. Zachariasen,J. Am. Chem. Soc. 54, 3841 (1932).

    Google Scholar 

  38. B. E. Warren,J. Am. Ceram. Soc. 21, 259 (1938);J. Appl. Phys. 13, 602 (1942).

    Google Scholar 

  39. J. M. Stevels,Handbook of Physics, Vol. 20, S. Flugge, ed. (Springer-Verlag, Berlin, 1957), p. 350.

    Google Scholar 

  40. J. Kruger and H. T. Yolken,Corrosion 20, 29t (1964).

    Google Scholar 

  41. F. P. Fehlner,Trans. 3rd Intern. Vac. Congr., Vol. 2 (Pergamon Press, Oxford, 1966), p. 691.

    Google Scholar 

  42. F. P. Fehlner,J. Electrochem. Soc. 115, 726 (1968).

    Google Scholar 

  43. T. N. Rhodin, Jr.,J. Am. Chem. Soc. 72, 5102 (1950);73, 3143 (1951).

    Google Scholar 

  44. R. K. Hart,Proc. Roy. Soc. (London) Ser. A 236, 68 (1956).

    Google Scholar 

  45. F. P. Fehlner,J. Appl. Phys. 38, 2223 (1967).

    Google Scholar 

  46. A. J. Rosenberg, J. N. Butler, and A. A. Menna,Surface Sci. 5, 17 (1966).

    Google Scholar 

  47. J. J. Chessick, Yung-Fang Yu, and A. C. Zettlemoyer,Solid/Gas Interface, Proc. 2nd Intern. Conf. Surf. Act. (Butterworths, London, 1957), p. 269.

    Google Scholar 

  48. F. W. Young, Jr., J. V. Cathcart, and A. T. Gwathmey,Ada Met. 4, 145 (1956).

    Google Scholar 

  49. J. A. Davies, B. Domeij, J. P. S. Pringle, and F. Brown,J. Electrochem. Soc. 112, 675 (1965).

    Google Scholar 

  50. A. U. Seybolt,Advan. Phys. 12, 1 (1963).

    Google Scholar 

  51. L. Young and F. G. R. Zobel,J. Electrochem. Soc. 113, 277 (1966).

    Google Scholar 

  52. J. A. Ramsey and G. F. J. Garlick,Brit. J. Appl. Phys. 15, 1353 (1964).

    Google Scholar 

  53. R. B. Laibowitz,Appl. Phys. Letters 13, 221 (1968).

    Google Scholar 

  54. F. W. Schmidlin,J. Appl. Phys. 37, 2823 (1966).

    Google Scholar 

  55. R. C. Jaklevic and J. Lambe,Phys. Rev. Letters 17, 1139 (1966).

    Google Scholar 

  56. N. F. Mott,Contemp. Phys. 10, 125 (1969).

    Google Scholar 

  57. T. A. Delchar, F. C. Tompkins, and F. S. Ham,Proc. Roy. Soc. (London),300, 141 (1967).

    Google Scholar 

  58. V. A. Shvets, V. M. Vorotyntsev, and V. B. Kazanskii,Kinet. Katal. 10, 356 (1969).

    Google Scholar 

  59. P. J. Jorgensen,J. Chem. Phys. 49, 1594 (1968).

    Google Scholar 

  60. M. Wyn Roberts,Quart. Rev. (London) 16, 71 (1962).

    Google Scholar 

  61. C. J. Dell'Oca and L. Young,Appl. Phys. Letters 13, 228 (1968);14, 332 (1969).

    Google Scholar 

  62. M. W. Roberts and B. R. Wells,Trans. Faraday Soc. 62, 1608 (1966).

    Google Scholar 

  63. W. A. Crossland and H. T. Roettgers,Phys. Failure Electron. 5, 158 (1966).

    Google Scholar 

  64. D. Michell and A. P. Smith,Phys. Stat. Sol. 27, 291 (1968).

    Google Scholar 

  65. O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths. London, 1962) p. 53.

    Google Scholar 

  66. O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths. London, 1962) p. 266.

    Google Scholar 

  67. J. V. Cathcart, G. F. Petersen, and C. J. Sparks,Surfaces and Interfaces, I. Chemical and Physical Characteristics, J. J. Burkeet al., eds. (Syracuse Univ. Press, Syracuse, 1967), p. 333.

    Google Scholar 

  68. D. A. Vermilyea,J. Electrochem. Soc. 110, 345 (1963).

    Google Scholar 

  69. L. Young,Anodic Oxide Films (Adademic Press, New York, 1961), p. 116.

    Google Scholar 

  70. J. Friedel,Dislocations (Pergamon Press, New York, 1964), p. 289.

    Google Scholar 

  71. H. P. Godard,J. Electrochem. Soc. 114, 354 (1967).

    Google Scholar 

  72. H. H. Uhlig,Acta Met. 4, 541 (1956).

    Google Scholar 

  73. K. R. Lawless and D. F. Mitchell,Mem. Sci. Rev. Met. 62, 27 (1965).

    Google Scholar 

  74. R. Cigna, J. S. Llewelyn Leach, and A. Y. Nehru,J. Electrochem. Soc. 113, 105 (1966).

    Google Scholar 

  75. Y. Nishi,Japan. J. Appl. Phys. 5, 333 (1966).

    Google Scholar 

  76. R. J. Archer and G. W. Gobeli,J. Phys. Chem. Solids 26, 343 (1965).

    Google Scholar 

  77. W. A. Alexander and L. M. Pidgeon,Can. J. Res. B 28, 60 (1959).

    Google Scholar 

  78. Yung-Fang Yu, J. J. Chessick, and A. C. Zettlemoyer,Advan. Catalysis 9, 415 (1957).

    Google Scholar 

  79. G. Cornoe and J. Sannier,Compt. Rend. 265, 57 (1967).

    Google Scholar 

  80. Kuan-Han Sun and M. L. Huggins,J. Phys. Colloid Chem. 51, 438 (1947).

    Google Scholar 

  81. F. D. Rossiniet al, Selected Values of Chemical Thermodynamic Properties, NBS Circular 500 (U.S. Government Printing Office, Washington, D.C., 1952).

    Google Scholar 

  82. R. V. Culver and F. C. Tompkins,Advan. Catalysis 11, 68 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehlner, F.P., Mott, N.F. Low-temperature oxidation. Oxid Met 2, 59–99 (1970). https://doi.org/10.1007/BF00603582

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603582

Keywords

Navigation