Skip to main content
Log in

Specificity and sodium dependence of the active sugar tansport in the proximal convolution of the rat kidney

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

With the technique of stop flow microperfusion with simultaneous capillary perfusion, the zero net flux transtubular concentration difference (Δc) of labelled sugars was measured.

The following sequence of Δc values, which are a measure for the active transtubular transport rate, were evaluated:d-glucose ≅β methyl-d-glycoside >α-methyl-d-glycoside >d-galactose >3-O-methyl-glucose >d-allose. When 10−4 M phlorrhizin was given in the luminal perfusate the Δc's dropped to zero (±8%). Δc-values in the same range i.e. indicating no active transport, were found for:l-glucose,d-mannose, 2-deoxy-d-glucose,d-fructose,d-glucosamine, 6-deoxy-d-galactose (=d-fucose),d-ribose and the reference polyalcohold-mannitol. Inhibition of thed-galactose δc was achieved by 15 mmol/l of the following sugars: α-methyl-d-glycoside ≅d-glucose ≅ 6-deoxy-d-glucose >3-O-methyl-d-glucose an no significant inhibition byd-xylose andd-mannose. Against Δc of α-methyl-d-glucose the following inhibitory potency was observed:d-glucose >6-deoxy-d-glucose >3-O-methyl-d-glucose ≅d-galactose >d-xylose and no inhibition byd-mannose.

When the ambient sodium was replaced by choline, the Δc values of all actively transported sugars dropped toward zero. An analysis of the Na+ dependence of the α-methyl-d-glycoside transport revealed that the sodium dependence is of the affinity type i.e. that onlyK m increased with increasing Na+ concentration whileV max remained almost constant.

From these data one can conclude: 1. The Crane specificity, i.e. that only the α-position of the OH-group on carbon atom 2 is essential, which was found for the intestinal hexose transport holds for the rat proximal kidney tubule, too. 2. The hexose transport system in the rat works only when Na+-ions are present. The sodium ions augment the affinity of the hexose transport system for the hexoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, W. McD., White, J. F.: Electrical events during solute transfer in epithelial cells of small intestine. In: Electrophysiology of epithelial cells. G. Giebisch, Ed., pp. 285–312. Stuttgart-New York: F. K. Schattauer 1971

    Google Scholar 

  2. Baumann, K., Frömter, E., Ullrich, K. J.: Passiver Stofftransport durch Epithelzellschicht von Harnkanälchen. Ber. Bunsenges. physik. Chem.71, 834–838 (1967)

    Google Scholar 

  3. Baumann, K., Huang, K. C.: Micropuncture and microperfusion study ofl-glucose secretion in rat kidney. Pflügers Arch.305, 155–166 (1969)

    Google Scholar 

  4. Baumann, K., Kinne, R.: The effect of sodium on the transtubular transport ofd-glucose in rat kidney and on thed-glucose binding to isolated brush border membranes. In: Na linked transport of organic solutes. E. Heinz Ed., pp. 130–133. Berlin-Heidelberg-New York: springer 1972

    Google Scholar 

  5. Baumann, K., Vick, H.: Is there any evidence for a transport system for glucose derived from sucrose in rat kidney. In: Na-linked transport of organic solutes. E. Heinz, Ed., pp. 154–157. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  6. Crane, R. K.: Hypothesis for mechanism of intestinal active transport of sugars. Fed. Proc.21, 891–895 (1962)

    Google Scholar 

  7. Czáky, T. Z.: A possible link between active transport of electrolytes and nonelectrolytes. Fed. Proc.22, 3–7 (1963)

    Google Scholar 

  8. Frasch, W., Frohnert, P. P., Bode, F., Baumann, K., Kinne, R.: Competitive inhibition of phlorizin binding byd-glucose and the influence of sodium: a study on isolated brush border membrane of rat kidney. Pflügers Arch.320, 265–284 (1970)

    Google Scholar 

  9. Frömter, E., Luer, K.: Electrical studies on sugar transport kinetics of rat proximal tubule. Pflügers Arch.343, R 47 (1973)

    Google Scholar 

  10. Frömter, E., Rumrich, G., Ullrich, K. J.: Phenomenological description of Na+Cl and HCO3 -absorption from proximal tubules of the rat kidney. Pflügers Arch.343, 189–220 (1973)

    Google Scholar 

  11. Glossmann, H., Neville, D. M., Jr.: Phlorizin receptors in isolated kidney brusch border membranes. J. biol. Chem.247, 7779–7789 (1972)

    Google Scholar 

  12. Heidrich, H.-G., Kinne, R., Kinne-Saffran, E., Hanning, K.: The polarity of the proximal tubule cell in rat kidney. J. Cell Biol.54, 232–245 (1972)

    Google Scholar 

  13. Heinz, E., Geck, P., Wilbrandt, W.: Coupling in secondary active transport. Activation of transport by cotransport and/or countertransport with the fluxes of other solutes. Biochim. biophys. Acta (Amst.)255, 442–461 (1972)

    Google Scholar 

  14. Kinne, R., Kinne-Saffran, E., Murer, H.: Uptake ofd-glucose by brush border microvilli and membranes from lateral and basal infoldings isolated from rat kidney cortex. Pflügers Arch.343, R 46 (1973)

    Google Scholar 

  15. Kleinzeller, A.: The specificity of the active sugar transport in kidney cortex cells. Biochim. biophys. Acta (Amst.)211, 264–276 (1970)

    Google Scholar 

  16. Kleinzeller, A.: Active sugar transport in renal cortex cells: The electrolyte requirement. Biochim. biophys. Acta (Amst.)211, 277–292 (1970)

    Google Scholar 

  17. Kleinzeller, A.: The Na-independent transport of sugar in renal tubular cells. In: Na+ linked transport of organic solutes. E. Heinz, Ed., pp. 109–115. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  18. Loeschke, K., Baumann, K., Renschler, H., Ullrich, K. J.: Differenzierung zwischen aktiver und passiver Komponente desd-Glucosetransports am proximalen Tubulus der Rattenniere. Pflügers Arch.305, 118–138 (1969)

    Google Scholar 

  19. Malnic, G., Klose, R. M., Giebisch, G.: Micropuncture study of renal potassium excretion in the rat. Amer. J. Physiol.206, 674–686 (1964)

    Google Scholar 

  20. Maruyama, T., Hoshi, R.: The effect ofd-glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim. biophys. Acta (Amst.)282, 214–225 (1972)

    Google Scholar 

  21. Ruedas, G., Weiss, Ch.: Die Wirkung von Änderungen der Natriumkonzentration im Perfusionsmedium und von Strophanthin auf die Glucoseresorption der isolierten Rattenniere. Pflügers Arch. ges. Physiol298, 12–22 (1967)

    Google Scholar 

  22. Segal, S., Rosenhagen, M., Rea, C.: Developmental and other characteristics of α-methyl-d-glycoside transport by rat kidney cortex slices. Biochim. biophys. Acta (Amst.)291, 519–530 (1973)

    Google Scholar 

  23. Silverman, M.: The specificity of transport receptors for monosaccharides in the dog kidney. Clin. Res.19, 812 (1971)

    Google Scholar 

  24. Silverman, M., Aganon, M. A., Chinard, F. P.: Specificity of monosaccharide transport in dog kidney. Amer. J. Physiol.218, 743–750 (1970)

    Google Scholar 

  25. Smith, H. W.: The Kidney. Structure and function in health and disease, p. 101. Oxford: Univ. Press 1951

    Google Scholar 

  26. Stein, W. D.: The movement of molecules across cell membranes. New York and London: Academic Press 1967)

    Google Scholar 

  27. Stolte, H., Hare, D., Boylan, J. W.:d-glucose and fluid absorption in proximal surface tubule of the rat kidney. Pflügers Arch.334, 193–206 (1972)

    Google Scholar 

  28. Ullrich, K. J.: Anatomie eines Epithels. Analyse des Stofftransportes durch den proximalen Nierentubulus. Naturwissenschaften60, 290–297 (1973)

    Google Scholar 

  29. Ullrich, K. J.: Permeability characteristics of the mammalian nephron. In: Handbook of Physiology, Sec. 8, J. Orloff and R. W. Berliner, Eds. Amer. Physiol. Soc. Washington 1973, pp. 377–398

  30. Ullrich, K. J., Frömter, E., Baumann, K.: Micropuncture and microanalysis in kidney physiology. In: Laboratory techniques in membrane biophysics. H. Passow and R. Stämpfli, Eds., pp. 106–129. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  31. Ullrich, K. J., Rumrich, G., Klöss, S.: Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pflügers Arch.351, 49–60 (1974)

    Google Scholar 

  32. Ullrich, K. J., Sato, K., Rumrich, G.: Coupling of the transport processes across the brush border of the proximal renal tubule. In: Transport mechanisms in epithelia, H. H. Ussing and N. A. Thorn, Eds., pp. 560–571. Copenhagen: Munksgaard, New York: Academic Press 1972

    Google Scholar 

  33. Vogel, G., Kröger, W.: Die Bedeutung des Transportes, der Konzentration und der Darbietungsrichtung von Na+ für den tubulären Glucose- und PAH-Transport. Pflügers Arch. ges. Physiol.288, 342–358 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, K.J., Rumrich, G. & Klöss, S. Specificity and sodium dependence of the active sugar tansport in the proximal convolution of the rat kidney. Pflugers Arch. 351, 35–48 (1974). https://doi.org/10.1007/BF00603509

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603509

Key words

Navigation