Pflügers Archiv

, Volume 351, Issue 1, pp 1–12 | Cite as

Widening of the paracellular pathway in the kidney tubule by a transtubular osmotic gradient

Passage of graded size non-electrolytes
  • Margarita Pérez-Gonzalez
  • Guillermo Whittembury
Article

Summary

Trace amounts of either labelled mannitol, sucrose, raffinose or inulin were added to the portal circulation in the doubly perfused toad kidney and their-urine-to-portal fluid, labelled molecules-to-chemical inulin ratio (denoted here asR) was evaluated. Under control isosmotic conditionsR was found to be inversely related to the probing molecule radius.R for inulin was practically zero.R for all probing molecules rose reversibly when the luminal fluid was rendered hyperosmotic by addition of 50 mmole mannitol to the aortic circulation, and even more so when 50 mmole urea was added per liter of aortic fluid. ThusR for raffinose rose from 0.0025±0.0002 (control) to 0.0126±0.0012 (+50 mM mannitol) and to 0.0967±0.0112 (+50 mM urea). This increase inR must be due to widening of the paracellular shunt pathway since the contribution of portal circulation to the glomerular filtrate was negligible and these molecules are known to stay extracellular. The present experiments suggest that transtubular urea (and osmotic) gradients may play a role in the regulation of the size of the paracellular shunt pathway.

Key words

Paracellular Shunt Pathway Transtubular Permeability Perfused Toad Kidney Transtubular Osmotic Gradient Kidney Epithelia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentzel, C. J.: Proximal tubule structure-function relationship during volume expansion in Necturus. Kidney Internat.2, 324–335 (1972)Google Scholar
  2. 2.
    Boulpaep, E. L.: Permeability changes of the proximal tubule of Necturus during saline loading. Amer. J. Physiol.222, 517–531 (1972)Google Scholar
  3. 3.
    Erlij, D., Martínez-Palomo, A.: Opening of tight junctions in frog skin by hypertonic urea solutions. J. Membrane Biol.9, 229–240 (1972)Google Scholar
  4. 4.
    Landis, E. M., Pappenheimer, J. R.: Exchange of substances through capillary walls. In: Handbook of Physiology, Section 2, Circulation, Vol. II, pp. 961–1034. Washington: American Physiological Society, 1963Google Scholar
  5. 5.
    Lindley, B. D., Hoshiko, T., Leb, D. E.: Effects of D20 and osmotic gradients on potential and resistance of the isolated frog skin. J. gen. Physiol.47, 773–793 (1964)Google Scholar
  6. 6.
    Marsh, D. J.: Solute and water flows in thin limbs of Henle's loop in the hamster kidney. Amer. J. Physiol.218, 824–831 (1970)Google Scholar
  7. 7.
    Martínez-Palomo, A., Erlij, D.: The distribution of lanthanum in tight junctions of the kidney tubule. Pflügers Arch.343, 267–272 (1973)Google Scholar
  8. 8.
    Patlak, C. S., Rapoport, S. I.: Theoretical analysis of net tracer flux due to volume circulation in a membrane with pores of different sizes. Relation to solute drag model. J. gen. Physiol.57, 113–124 (1971)Google Scholar
  9. 9.
    Pérez-González, M., González, E., Rawlins, F. A., Whittembury, G.: Caracterización de la via paracelular en tubos renales. Acta cient. venez.24, Suppl. No. 1, 2 (1973)Google Scholar
  10. 10.
    Rawlins, F. A., González, E., Perez-González, M., Whittembury, G.: Effect of transtubular osmotic gradients on the paracellular pathway in toad kidney proximal tubule: electron microscopic observations. Pflügers Arch. (in the press, 1974)Google Scholar
  11. 10a.
    Roch-Ramel, F., Diézi, J., Chométy, F., Michoud, P., Peters, G.: Disposal of large urea overloads by the rat kidney: a micropuncture study. Amer. J. Physiol.218, 1524–1532 (1970)Google Scholar
  12. 11.
    Tisher, C. C., Yarger, W. E.: Lanthanum permeability of the tight junction (zonula occludens) in the renal tubule of the rat. Kidney Internat.3, 238–250 (1973)Google Scholar
  13. 12.
    Ullrich, K. J., Schmidt-Nielsen, B., O'Dell, R., Pehling, G., Gottschalk, C. W., Lassiter, W. E., Mylle, M.: Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Amer. J. Physiol.204, 521–531 (1963)Google Scholar
  14. 13.
    Ussing, H. H.: The interpretation of tracer fluxes in terms of membrane structure. Quart. Rev. Biophys.1, 365–376 (1969)Google Scholar
  15. 14.
    Ussing, H. H.: The effect of urea on permeability and transport of frog skin. In: Urea and the kidney, pp. 138–146, B. Schmidt-Nielsen, Ed. Amsterdam: Excepta Medica Foundation 1970Google Scholar
  16. 15.
    Ussing, H. H.: Introductory remarks. Phil. Trans. B262, 85–90 (1971)Google Scholar
  17. 16.
    Ussing, H. H., Windhager, E. E.: Nature of shunt path and active sodium transport through frog skin epithelium. Acta physiol. scand.61, 484–504 (1964)Google Scholar
  18. 17.
    Whittembury, G., Fishman, J.: Relation between cell Na extrusion and transtubular absorption in the perfused toad kidney: the effect of K, ouabain and ethacrynic acid. Pflügers Arch.307, 138–153 (1969)Google Scholar
  19. 18.
    Whittembury, G., Rawlins, F. A.: Evidence of a paracellular pathway for ion flow in the kidney proximal tubule: electronmicroscopic demonstration of lanthanum precipitate in the tight junction. Pflügers Arch.330, 302–309 (1971)Google Scholar
  20. 19.
    Whittembury, G., Rawlins, F. A., Boulpaep, E. L.: Paracellular pathway in kidney tubules. Electrophysiological and morphological evidence. In: Transport mechanism in epithelia, Alfred Benzon Symposium V, pp. 577–590, H. H. Ussing and N. A. Thorn, Eds. Copenhagen: Munksgaard 1973Google Scholar
  21. 20.
    Whittembury, G., Sugino, N., Solomon, A. K.: Effect of anti-diuretic hormone and calcium on the equivalent pore radius of kidney slices from. Necturus. Nature (Lond.)187, 699–701 (1960)Google Scholar
  22. 21.
    Whittembury, G., Sugino, N., Solomon, A. K.: Ionic permeability and electrical potential differences in Necturus kidney cells. J. gen. Physiol.44, 689–712 (1961)Google Scholar
  23. 22.
    Windhager, E. E., Boulpaep, E. L., Giebisch, G.: Electrophysiological studies on single nephrons. Proc. 3rd. International Congress of Nephrology, Washington D. C., 1966, vol. I, pp. 35–47. Basel-New York: Karger 1967Google Scholar
  24. 23.
    Wirz, H., Dirix, R.: Urinary concentration and dilution. In: Handbook of Physiology, Section 8, Renal Physiology, pp. 415–430, Washington: American Physiological Society 1973Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Margarita Pérez-Gonzalez
    • 1
    • 2
  • Guillermo Whittembury
    • 1
    • 2
  1. 1.Centro de Biofísica y BioquímicaInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela
  2. 2.Instituto de Medicina ExperimentalUniversidad Central de VenezuelaVenezuela

Personalised recommendations