Chemistry of Natural Compounds

, Volume 23, Issue 1, pp 63–74 | Cite as

13C NMR spectra of arylnaphthalene lignans

  • N. D. Abdullaev
  • M. R. Yagudaev
  • É. Kh. Batirov
  • V. M. Malikov


The13C NMR spectra have been investigated of a number of arylnaphthalene lignans of plant origin: daurinol and its acetyl derivative and reduction product, justicidin A, justicidin B and its reduction product and the diacetyl derivative of the reduction product, and diphyllin and its acetate. The values of the chemical shifts of the carbon atoms in the spectra of the compounds investigated and the nature of their change according to structural factors are discussed and an assignment is made of the resonance lines in the spectra. The characteristics of the spectrum of one compound are used as models for others. The parameters of the13C NMR spectra of a number of naphthalene derivatives are also used. On the basis of the results of the assignment of the signals, difference values of the chemical shifts of the carbon atoms in the series of compounds investigated have been determined. Using the experimental results as a background, some examples taken from the literature of investigations of the13C NMR spectra of related compounds have been analyzed.


Acetate Carbon Atom Chemical Shift Naphthalene Acetyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. S. Burden, L. Crombie, and D. A. Whiting, J. Chem. Soc., C, No. 5, 693 (1969).Google Scholar
  2. 2.
    Z. Horii, M. Tsujiuchi, and T. Momoes, Tetrahedron Lett., 1079 (1969).Google Scholar
  3. 3.
    M. Okigawa, T. Maeda, and N. Kowano Tetrahedron,26, No. 18, 4301 (1970).Google Scholar
  4. 4.
    K. Ohta and K. Munakata, Tetrahedron Lett., 923 (1970).Google Scholar
  5. 5.
    T. L. Holmes and R. Stevenson, J. Org. Chem.,36, 3450 (1971).Google Scholar
  6. 6.
    G. M. Sheriha and K. M. Abou-Amer, Phytochemistry,23, 151 (1984).Google Scholar
  7. 7.
    D. Batsuren, E. Kh. Batirov, V. M. Malikov, V. N. Zemlya'skii, and M. R. Yagudaev, Khim. Prir. Soedin., 295 (1981).Google Scholar
  8. 8.
    D. Batsuren, M. R. Yagudaev, E. Kh. Batirov, and V. M. Malikov, Khim. Prir. Soedin., 19 (1983).Google Scholar
  9. 9.
    A. S. R. Anjaneyelu, P. A. Ramaian, L. Ramachandra Row, and R. Venkatewsarlu, Tetrahedron,37, No. 21, 3641 (1981).Google Scholar
  10. 10.
    T. Lözler and B. Lözler, Tetrahedron,40, 1145 (1984).Google Scholar
  11. 11.
    D. W. Hughes, H. L. Holland, and D. B. MacLean, Can. J. Chem.,54, 2252 (1976).Google Scholar
  12. 12.
    L. M. X. Lopes, M. Yoshida, and O. R. Gottlieb, Phytochemistry,23, 2647 (1984).Google Scholar
  13. 13.
    G. A. Mikaya, D. G. Turabelidze, E. P. Kemertelidze, and N. S. Wulfson, Planta Med.,43, 378 (1981).Google Scholar
  14. 14.
    A. A. Olaniy, Planta Med.,44, 154 (1982).Google Scholar
  15. 15.
    E. Wenkert, H. E. Gottlieb, O. R. Gottlieb, M. O. Da S. Pereria, and M. D. Formiga, Phytochemistry,15, 1547 (1976).Google Scholar
  16. 16.
    R. Cooper, H. E. Gottlieb, and D. Lavie, Phytochemistry,17, 1673 (1978).Google Scholar
  17. 17.
    F. W. Wehrli and T. Wirthlin, Interpretation of13C NMR Spectra, Heyden, London (1976), p. 47.Google Scholar
  18. 18.
    E. Wenkert, B. L. Buckwalter, I. R. Burfitt, M. F. Gasio, H. E. Gottlieb, E. W. Hagaman, F. M. Schell, and P. M. Wovkulich, “Carbon-13 NMR Spectroscopy of Naturally Occurring substances,” in: Ropics in Carbon-13 NMR Spectroscopy, G. C. Levy, ed., Wiley-Interscience, New York, Vol. 2 (1976), p. 81.Google Scholar
  19. 19.
    L. F. Johnson, and W. C. Jankowski Carbon-13 NMR Spectra (Nos. 230, 246, 281), Wiley-Interscience, New York (1972).Google Scholar
  20. 20.
    R. Pinchin, L. M. U. Mayer, and A. da Cunba Pinto, Phytochemistry,17, 1671 (1978).Google Scholar
  21. 21.
    A. J. Jones, T. D. Alger, D. M. Grant, and W. M. Litchman, J. Am. Chem. Soc.,92, 2386 (1970).Google Scholar
  22. 22.
    L. Ernst, Chem. Ber.,108, 2030 (1975).Google Scholar
  23. 23.
    S. Berger and K.-P. Zeller, J. Chem. Soc. Chem. Commun., 423 (1975).Google Scholar
  24. 24.
    W. S. Murphy and S. Wattanasin, J. C. S. Perkin I, 1029 (1982).Google Scholar
  25. 25.
    P. E. Hansen, O. K. Poulsen, and A. Berg, Org. Magn. Reson.,9, 649 (1977).Google Scholar
  26. 26.
    L. M. X. Lopes, M. Yoshida, and O. R. Gottlieb, Phytochemistry,23, 2021 (1984).Google Scholar
  27. 27.
    P. K. Agrawal and R. S. Thakur, Magn. Reson. Chem.,23, 389 (1985).Google Scholar
  28. 28.
    M. Fuyita, M. Nagai, and T. Inoue, Chem. Pharm. Bull.,30, No. 4, 1151 (1982).Google Scholar
  29. 29.
    E. Kh. Batirov, A. D. Matkarimov, and V. M. Malikov, Khim. Prir. Soedin., 386 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • N. D. Abdullaev
  • M. R. Yagudaev
  • É. Kh. Batirov
  • V. M. Malikov

There are no affiliations available

Personalised recommendations