Pflügers Archiv

, Volume 353, Issue 2, pp 107–121 | Cite as

Influence of intracranial osmotic stimuli on renal nerve activity in anaesthetized cats

  • H. Schad
  • H. Seller


In baroreceptor denervated cats one internal carotid artery (ICA) or the cerebral ventricular system (CVS) was perfused with isotonic, hypertonic and hypotonic sodium chloride solutions. Renal sympathetic activity (RSA) and blood pressure (BP) were recorded.

ICA perfusion with isotonic sodium chloride (150 mM NaCl) produced no changes of RSA compared to control levels. RSA was increased from +30% to +350% in 44 tests out of 45 tests following hypertonic (425 mM NaCl) ICA perfusion. RSA was decreased following hypotonic (aqua dest.) ICA perfusion from −30% to −100% in 37 tests out of 50 tests. The degree of RSA changes was found to depend upon the osmolarity of the solutions. 425 mM NaCl and aqua dest. produced greater RSA changes than 290 mM NaCl and 75 mM NaCl.

CVS perfusion with isotonic sodium chloride produced a slight increase of RSA compared to control levels (+15%). Hypertonic sodium chloride produced a RSA increase from +15% to +135% in 10 tests out of 14 tests. Hypotonic sodium chloride produced a RSA decrease from −15% to −80% in 8 tests out of 14 tests.

Changes of RSA following ICA perfusions and CVS perfusions were accompanied by changes of BP in the same direction. A quantitative correlation between ΔRSA and ΔBP could not be found.

Results suggest that renal osmoregulatory response to osmotic stimuli in the carotid artery may not just arise in response to changing ADH levels but may also be induced by changes in RSA.

Key words

Renal Sympathetic Activity Osmoregulation Cerebral Ventricular Perfusion Carotid Artery Perfusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aars, H., Leraand, S.: A method for quantitative analysis of aortic nerve activity. J. appl. Physiol.24, 416–418 (1968)Google Scholar
  2. 2.
    Alexander, R. S.: The effects of blood flow and anoxia on spinal cardiovascular centers. Amer. J. Physiol.143, 698–708 (1945)Google Scholar
  3. 3.
    Ames, R. G., Moore, D. H., VanDyke, H. B.: The excretion of posterior pituitary antidiuretic hormone in the urine and its detection in the blood. Endocrinology46, 215–227 (1950)Google Scholar
  4. 4.
    Andersson, B., Olsson, K., Warner, R. G.: Dissimilarities between the central control of thirst and the release of antidiuretic hormone (ADH). Acta physiol. scand.71, 57–64 (1967)Google Scholar
  5. 5.
    Arndt, J. O., Gauer, O. H.: Diuresis induced by water infusion into the carotid loop of unanaesthetized dogs. Pflügers Arch. ges. Physiol.282, 301–312 (1965)Google Scholar
  6. 6.
    Bennett, C. T.: Activity of osmosensitive neurons: plasma osmotic pressure thresholds. Physiol. Behav.11, 403–406 (1973)Google Scholar
  7. 7.
    Bonjour, J. Ph., Churchill, P. C., Malvin, R. L.: Change of tubular reabsorption of sodium and water after renal denervation in the dog. J. Physiol. (Lond.)204, 571–582 (1969)Google Scholar
  8. 8.
    Cort, J. H.: Electrolytes, fluid dynamics and the nervous system. New York: Academic Press Inc. 1965Google Scholar
  9. 9.
    Cross, B. A., Green, J. D.: Activity of single neurons in the hypothalamus: effect of osmotic and other stimuli. J. Physiol. (Lond.)148, 554–569 (1959)Google Scholar
  10. 10.
    Dyball, R. E. J.: Oxytocin and ADH secretion in relation to electrical activity in antidromically identified supraoptic and paraventricular units. J. Physiol. (Lond.)214, 245–256 (1971)Google Scholar
  11. 11.
    Eriksson, L., Fernández, O., Olsson, K.: Differences in the antidiuretic response to intracarotid infusions of various hypertonic solutions in the conscious goat. Acta physiol. scand.83, 554–562 (1971)Google Scholar
  12. 12.
    Feldberg, W., Myers, R. D., Veale, W. L.: Perfusion from cerebral ventricle to cisterna magna in the unanaesthetized cat. Effect of calcium on body temperature. J. Physiol. (Lond.)207, 403–416 (1970)Google Scholar
  13. 13.
    Gauer, O. H., Tata, P. S.: Vasopressin studies in the rat. II. The amount of water reabsorbed by the rat kidney after a single injection of vasopressin: the vasopressin-water-equivalent. Pflügers Arch. ges. Physiol.290, 286–293 (1966)Google Scholar
  14. 14.
    Gauer, O. H., Tata, P. S.: Vasopressin studies in the rat. IV. The vasopressinwater-equivalent and vasopressin clearance by the kidney. Pflügers Arch. ges. Physiol.298, 241–257 (1968)Google Scholar
  15. 15.
    Hayward, J. N., Jennings, D. P.: Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetized monkeys. I. Functional cell types and their anatomical distribution in the supraoptic nucleus and the internuclear zone. J. Physiol. (Lond.)232, 515–543 (1973)Google Scholar
  16. 16.
    Hayward, J. N., Jennings, D. P.: Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetized monkeys. II. Osmosensitivity of functional cell types in the supraoptic nucleus and the internuclear zone. J. Physiol. (Lond.)232, 545–572 (1973)Google Scholar
  17. 17.
    Hayward, J. N., Vincent, J. D.: Osmosensitive single neurones in the hypothalamus of unanaesthetized monkeys. J. Physiol. (Lond.)210, 947–972 (1970)Google Scholar
  18. 18.
    Holland, R. C., Sundsten, J. W., Sawyer, C. H.: Effects of intracarotid injections of hypertonic solutions on arterial pressure in the rabbit. Circulat. Res.7, 712–720 (1959)Google Scholar
  19. 19.
    Iriuchijima, J.: Sympathetic discharge rate in spontaneously hypertensive rats. Jap. Heart J.14, 350–356 (1973)Google Scholar
  20. 20.
    Johnston, I. A., Harper, A. M.: The effect of mannitol on cerebral blood flow. An experimental study. J. Neurosurg.38, 461–471 (1973)Google Scholar
  21. 21.
    Kamm, D. E., Levinsky, N. G.: The mechanism of denervation natriuresis. J. clin. Invest.44, 93–102 (1965)Google Scholar
  22. 22.
    Korner, P. J.: Renal blood flow, glomerular filtration rate, renal PAH extraction ratio, and the role of the renal vasomotor nerves in the unanaesthetized rabbit. Circulat. Res.12, 353–360 (1963)Google Scholar
  23. 23.
    Moore, R. M.: The stimulation of peripheral nerve-elements subserving painsensibility by intra-arterial injections of neutral solutions. Amer. J. Physiol.110, 191–197 (1934)Google Scholar
  24. 24.
    Moore, R. M., Moore, R. E.: Studies of the pain-sensibility of arteries. Amer. J. Physiol.104, 259–266 (1933)Google Scholar
  25. 25.
    Myers, R. D., Veale, W. L.: The role of sodium and calcium ions in the hypothalamus in the control of body temperature of the unanaesthetized cat. J. Physiol. (Lond.)212, 411–430 (1971)Google Scholar
  26. 26.
    Olesen, J.: Effect of intracarotid adrenaline, noradrenaline and angiotensin on the regional cerebral blood flow in man. Neurology (Minneap.)22, 978–987 (1972)Google Scholar
  27. 27.
    Olsson, K.: Dipsogenic effect of intracarotid infusions of various hyperosmolal solutions. Acta physiol. scand.85, 517–522 (1972)Google Scholar
  28. 28.
    Olsson, K.: Further evidence for the importance of CSF Na+ concentration in central control of fluid balance. Acta physiol. scand.88, 183–188 (1973)Google Scholar
  29. 29.
    Pomeranz, B. H., Birtch, A. G., Barger, A. C.: Neural control of intrarenal blood flow Amer. J. Physiol.215, 1067–1081 (1968)Google Scholar
  30. 30.
    Ray, B. S., Wolff, H. G.: Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch. Surg.41, 813 (1940)Google Scholar
  31. 31.
    Richter, D. W.: Quantitative Untersuchungen über die Beeinflussung der Sympathicusaktivität durch die pressoreceptorischen Afferenzen des Carotissinus. Inaugural-Dissertation, München 1969Google Scholar
  32. 32.
    Sawyer, C. H., Gernandt, B. E.: Effects of intracarotid and intraventricular injections of hypertonic solutions on electrical activity of the rabbit brain. Amer. J. Physiol.185, 209–216 (1956)Google Scholar
  33. 33.
    Schad, H.: Effects of intracranial osmotic stimuli upon renal nerve activity. Pflügers Arch.335, R 28 (1972)Google Scholar
  34. 34.
    Scherrer, H.: Atem- und Kreislaufreaktionen bei Injektion von hypertonischer Kochsalzlösung in die A. carotis der Ratte. Pflügers Arch. ges. Physiol.277, 372–386 (1963)Google Scholar
  35. 35.
    Schieve, J. F., Wilson, W. P.: Changes in cerebral vascular resistance of man in experimental alkalosis and acidosis. J. clin. Invest.32, 33–38 (1953)Google Scholar
  36. 36.
    Seller, H., Schad, H.: The effect of anaesthesia and baroreceptor afferents upon the somatic-depressor reflex. Acta physiol. pol.24, 111–113 (1973)Google Scholar
  37. 37.
    Vander, A. J.: Effect of catecholamines and the renal nerves on renin secretion in anaesthetized dogs. Amer. J. Physiol.209, 659–662 (1965)Google Scholar
  38. 38.
    Verney, E. B.: The antidiuretic hormone and the factors which determine its release. Proc. roy. Soc. B135, 25–106 (1947)Google Scholar
  39. 39.
    Vincent, J. D., Arnauld, E., Nicolescu-Catargi, A.: Osmoreceptors and neurosecretory cells in the supraoptic complex of the unanaesthetized monkey. Brain Res.45, 278–281 (1972)Google Scholar
  40. 40.
    Wahl, U., Kuschinsky, W., Bosse, O., Thurau, K.: Dependency of pial arterial and arteriolar diameter on perivascular osmolarity in the cat. Circulat. Res.32, 162–169 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • H. Schad
    • 1
  • H. Seller
    • 1
  1. 1.Physiologisches Institut der Universität MünchenMünchen 2Federal Republic of Germany

Personalised recommendations