Advertisement

Neuroradiology

, Volume 38, Issue 3, pp 254–263 | Cite as

Intracranial tumors in children: small single-voxel proton MR spectroscopy using short- and long-echo sequences

  • A. A. Tzika
  • D. B. Vigneron
  • R. S. Dunn
  • S. J. Nelson
  • W. S. BallJr
Paediatric Neuroradiology

Abstract

We report preliminary experience using single-voxel, proton MR spectroscopy (MRS) employing small voxels of interest, in combination with short and long echo-time protocols, for the assessment of primary intracranial tumors in children. We examined 23 children with primary intracranial tumors detected by MRI, and 32 controls with similar ages, using MRS on a 1.5 T system. Localized single-voxel (3.7±1.3 cc) proton spectra were obtained with short-echo (2,000/18), stimulated-echo (STEAM) and long-echo (2,000/270) spin-echo (PRESS) protocols. All spectra were evaluated qualitatively; 10 tumor and 19 control spectra were processed for peak area quantification. Small voxels of interest were able to account for tissue heterogeneity. Combined acquisition of short- and long-echo spectra increased the number of detectable metabolites. The solid portion of all tumors exhibited reducedN-acetyl-aspartate (NAA), strong contribution from cholines (Cho) and inositols or glycine, minimal presence of total creatine (tCr), enhanced broad mobile lipid resonances and accumulated lactate. Calculated selected metabolite ratios of Cho/tCr and Cho/NAA were substantially increased from control values. The cystic portions of the masses showed only lipid and lactate peaks.

Key words

Children Brain Neoplasms Central nervous system Magnetic resonance spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lenkinski R, Holland G, Allman T et al (1988) Integrated MR imaging and spectroscopy with chemical shift imaging of P-31 at 1.5 T: initial clinical experience. Radiology 169: 201–206Google Scholar
  2. 2.
    Radda G, Bore P, Rajagopalan B (1984) Clinical aspects of NMR spectroscopy. Br Med Bul 40: 155–160Google Scholar
  3. 3.
    Radda GK, Rajagopalan B, Taylor DJ (1989) Biochemistry in vivo: an appraisal of clinical magnetic resonance spectroscopy. Magn Reson Q 5: 122–151Google Scholar
  4. 4.
    Bottomley PA (1989) Human in vivo NMR spectroscopy in diagnostic medicine: clinical tool or research probe? Radiology 170: 1–15Google Scholar
  5. 5.
    Glickson J (1989) Clinical NMR spectroscopy of tumors. Current status and future directions. Invest Radiol 24: 1011–1016Google Scholar
  6. 6.
    Gill SS, Thomas DGT, Van Bruggen N, et al (1990) Proton MR spectroscopy of intracranial tumors: in vivo and in vitro studies. J Comput Assist Tomogr 14: 497–504Google Scholar
  7. 7.
    Bruhn H, Frahm J, Gungell M, et al (1989) Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172: 541–548Google Scholar
  8. 8.
    Luyten P, Marien A, Heidel W, et al (1990) Metabolic imaging of patients with intracranial tumors: H-1 MR spectroscopic imaging and PET. Radiology 176: 791–799Google Scholar
  9. 9.
    Sutton L, Wang Z, Gusnard D, et al (1992) Proton magnetic resonance spectroscopy of pediatric brain tumors. Neurosurgery 31: 195–202Google Scholar
  10. 10.
    Alger J, Frank J, Bizzi A, et al (1990) Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 flourodeoxyglucose PET. Radiology 177: 633–641Google Scholar
  11. 11.
    Young J, Miller R (1975) Incidence of malignant tumors in US children. J Pediatr 86: 254–258Google Scholar
  12. 12.
    Albright AL (1993) Pediatric brain tumors. CA Cancer J Clin 43: 272–288Google Scholar
  13. 13.
    Frahm J, Merboldt K, Hänicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72: 502–508Google Scholar
  14. 14.
    Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508: 333–348Google Scholar
  15. 15.
    Pauly J, Le Roux P, Nishimura D, Macovski A (1991) Parameter relations for the Shinner-Le Roux selective excitation pulse design algorithm. IEEE Trans Med Imaging 10: 53–65Google Scholar
  16. 16.
    Ernst T, Henning J (1991) Coupling effects in volume selective1H spectroscopy of major brain metabolites. Magn Reson Med 21: 82–96Google Scholar
  17. 17.
    Tzika AA, Vigneron DB, Ball WS, Dunn RS, Kirks DR (1993) Localized proton MR spectroscopy of the brain in children. J Magn Reson Imaging 3: 719–729Google Scholar
  18. 18.
    Haase A, Frahm J, Haenicke W, Matthei D (1985)1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30: 341–344Google Scholar
  19. 19.
    Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9: 79–93Google Scholar
  20. 20.
    Michaelis T, Merboldt KD, Hänicke W, Gyngell ML, Bruhn H, Frahm J (1991) On the identification of cerebral metabolites in localized1H spectra of human brain in vivo. NMR Biomed 4: 90–98Google Scholar
  21. 21.
    Nelson SJ, Brown TR (1987) A new method for automatic quantification of 1-D spectra with low signal to noise ratio. J Magn Reson 75: 229–243Google Scholar
  22. 22.
    Nelson SJ, Brown TR (1989) A study of the accuracy of quantification which can be obtained from 1-D NMR spectra using PIQABLE algorithm. J Magn Reson 84: 95–109Google Scholar
  23. 23.
    Tzika AA, Ball WS, Vigneron DB, Dunn RS, Nelson SJ, Kirks DR (1993) Childhood adrenoleukodystrophy: assessment with proton MR spectroscopy. Radiology 189: 467–480Google Scholar
  24. 24.
    Henning J, Pfister H, Ernst T, Ott D (1992) Direct absolute quantification of metabolites in the human brain with in vivo localized proton spectroscopy. NMR Biomed 5: 193–199Google Scholar
  25. 25.
    Kreis R, Ross BD, Farrow NA, Ackerman Z (1992) Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology 182: 19–27Google Scholar
  26. 26.
    Christiansen P, Henriksen O, Stubgaard M, Gileon P, Larson HBW (1993) In vivo quantification of brain metabolites by1H-MRS using water as an internal standard. Magn Reson Imaging 11: 107–118Google Scholar
  27. 27.
    Michaelis T, Merboldt K-D, Bruhn H, Hänicke W, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187: 219–227Google Scholar
  28. 28.
    Weiner M, Hetherington H (1989) The power of the proton. Radiology 172: 318–320Google Scholar
  29. 29.
    Leonard J, Younkin D, Chance B, et al (1985) Nuclear magnetic resonance: an overview of its spectroscopic and imaging applications in pediatric patients. J Pediatr 106: 756–761Google Scholar
  30. 30.
    Sutton L, Lenkinski R, Cohen B, Packer R, Zimmerman R (1990) Localized31P spectroscopy of large pediatric brain tumors. J Neurosurg 72: 65–70Google Scholar
  31. 31.
    Grodd W, Krägeloh-Mann I, Klose U, Sauter R (1991) Metabolic and destructive brain disorders in children: findings with localized proton MR spectroscopy. Radiology 181: 173–181Google Scholar
  32. 32.
    Kato T, Tokumaru A, O'uchi T, et al (1991) Assessment of brain death in children by means of P-31 MR spectroscopy: preliminary note. Radiology 179: 95–99Google Scholar
  33. 33.
    Bruhn H, Kruse B, Korenke GC, et al (1992) Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assit Tomogr 16: 335–344Google Scholar
  34. 34.
    Frahm J, Bruhn H, Hänicke W, Merboldt K, Mursch K, Markakis E (1991) Localized proton NMR spectroscopy of brain tumors using short-echo time STEAM sequences. J Comput Assist Tomogr 15: 915–922Google Scholar
  35. 35.
    Vogl T, Jassoy A, Soüner O, et al (1992) The proton MR spectroscopy of intracranial tumors. The differential diagnostic aspects for gliomas, metastases and meningiomas. Fortschr Röntgenstr 157: 371–377Google Scholar
  36. 36.
    Kinoshita Y, Kajiwara H, Yokota A, Koga Y (1993) Proton magnetic resonance spectroscopy of astrocytic tumors: an in vitro study. Neurol Med Chir (Tokyo) 33: 350–359Google Scholar
  37. 37.
    Brand A, Richter-Landsberg C, Leibfritz D (1992) Multinuclear NMR studies on the metabolism of neuronal and glial tumor cell lines and primary cells. Phys Med Acta 8: 23–30Google Scholar
  38. 38.
    Galons JP, Fantini J, Vion-Dury J, Cozzone PJ, Canioni P (1989) Metabolic changes in undifferentiated and differentiated human colon adenocarcinoma cells studied by multinuclear magnetic resonance spectroscopy. Biochimie 71: 949–961Google Scholar
  39. 39.
    Vogl T, Soüner O, Felix R (1994) Localized H-1 MR spectroscopy for noninvasive differentiation of cerebral tumors. J Magn Reson Imaging [Suppl 1] 4(P): 64Google Scholar
  40. 40.
    Ott D, Hennig J, Ernst T (1993) Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186: 745–752Google Scholar
  41. 41.
    Posse S, Schuknecht B, Smith M, Van Zijl P, Herschkowitz N, Moonen C (1993) Short echo time proton MR spectroscopic imaging. J Comput Assist Tomogr 17: 1–14Google Scholar
  42. 42.
    Kuesel AC, Sutherland GR, Halliday W, Smith CP (1994)1H MRS of high grade astrocytomas: mobile lipid accumulation in necrotic tissue. NMR Biomed 7: 149–155Google Scholar
  43. 43.
    Nadler JV, Cooper JR (1972). N-acetyl-L-aspartic acid content of human neural tumours and bovine peripheral nervous tissues. J Neurochem 19: 313–319Google Scholar
  44. 44.
    Koller KJ, Zaczek R, Coyle JT (1984) N-Acetyl-aspartyl-glutamate: regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. J Neurochem 43: 1136–1142Google Scholar
  45. 45.
    Frahm J, Bruhn H, Hänicke W, Merboldt K-D, Mursch K, Markakis E (1991) Localized proton NMR spectroscopy of brain tumors using shortecho time STEAM sequences. J Comput Assist Tomogr 15: 915–922Google Scholar
  46. 46.
    Bruhn H, Frahm J, Gyngell ML, et al (1989) Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172: 541–548Google Scholar
  47. 47.
    Urenjak J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem 59: 55–61Google Scholar
  48. 48.
    Kugel H, Heindel W, Ernestus RI, Bunke J, du Mesnil R, Friedman G (1992) Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology 183: 701–709Google Scholar
  49. 49.
    Fulham MJ, Bizzi A, Dietz MJ, Shih HH, Raman R (1992) Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 185: 675–686Google Scholar
  50. 50.
    Tzika AA, Ball WS, Vigneron DB, Dunn RS, Kirks DR (1993) Clinical proton MR spectroscopy of neurodegenerative disease in childhood. AJNR 14: 1267–1281Google Scholar
  51. 51.
    Van der Knaap MS, Van der Grond J, Van Rijen PC, Faber JA, Valk J, Willemse K (1990) Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 176: 509–515Google Scholar
  52. 52.
    Wang Z, Zimmerman R, Sutton L, Haselgrove J, Rorke L (1993) Proton MR spectroscopy of pediatric cerebellum brain tumors. Radiology [Suppl] 189(P): 195Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. A. Tzika
    • 1
    • 2
    • 3
    • 4
    • 5
  • D. B. Vigneron
    • 4
  • R. S. Dunn
    • 2
    • 3
  • S. J. Nelson
    • 4
  • W. S. BallJr
    • 2
    • 3
  1. 1.Department of RadiologyHarvard Medical SchoolBostonUSA
  2. 2.Department of RadiologyChildren's Hospital Medical CenterCincinnatiUSA
  3. 3.Departments of Radiology and PediatricsUniversity of Cincinnati College of MedicineCincinnatiUSA
  4. 4.Magnetic Resonance Science CenterUniversity of CaliforniaSan FranciscoUSA
  5. 5.Department of RadiologyChildren's HospitalBostonUSA

Personalised recommendations