Journal of Materials Science

, Volume 28, Issue 7, pp 1874–1878 | Cite as

Electron microscopic study of fine particles of beryllium

  • P. J. Herley
  • W. Jones


It is demonstrated that nanometre-sized particles of beryllium may be readily generatedin situ by the electron-beam induced decomposition of BeH2 within a transmission electron microscope. The particles, to a first approximation, are distributed around two well-defined sizes, each size with its own distinct morphology: the first are hexagonal plates (approximately 1.5 μm) and the second are slightly polygonized spheres of dimensions between 1 and 5 nm. The morphological form of these particles is presented and discussed as well as the electron energy loss spectrum and some high-resolution lattice images. The results are compared with those obtained for other metal hydrides.


Transmission Electron Microscope Hexagonal Hydride Energy Loss Electron Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Herley andW. Jones,Mater. Lett. 1 (1983) 131.CrossRefGoogle Scholar
  2. 2.
    W. Jones, T. G. Sparrow, B. G. Williams andP. J. Herley,ibid. 2 (1984) 377.CrossRefGoogle Scholar
  3. 3.
    P. J. Herley andW. Jones,J. Mater. Sci. Lett. 1 (1982) 163.CrossRefGoogle Scholar
  4. 4.
    P. J. Herley, W. Jones andB. Vigeholm,J. Appl. Phys. 58 (1985) 292.CrossRefGoogle Scholar
  5. 5.
    P. J. Herley andW. Jones,Mater. Sci. Engng A114 (1989) L1.Google Scholar
  6. 6.
    P. J. Herley, W. Jones andG. R. Millward,J. Mater. Sci. Lett. 8 (1989) 1013.CrossRefGoogle Scholar
  7. 7.
    P. J. Herley, N. P. Fitzsimons andW. Jones, in “Specimen Preparation for Transmission Electron Microscopy of Materials III”, Materials Research Society, Vol. 254, edited by R. Anderson, J. Bravman and B. Tracy (1992) p. 223. Materials Research Society, Pittsburgh, Pennsylvania.Google Scholar
  8. 8.
    P. J. Herley andW. Jones,Z. Phys. Chem. N. F 164 (1989) 1151.CrossRefGoogle Scholar
  9. 9.
    Idem, ibid. 147 (1986) 147.CrossRefGoogle Scholar
  10. 10.
    Y. Fukano andK. Nakao,Jpn J. Appl. Phys. 20 (1981) 477.CrossRefGoogle Scholar
  11. 11.
    K. Kimoto andI. Nishida ibid. 6 (1967) 1047.CrossRefGoogle Scholar
  12. 12.
    G. S. Smith, Q. C. Johnson, D. K. Smith, D. E. Cox andA. Zalkin,Solid State Commun. 67 (1988) 491, and references therein.CrossRefGoogle Scholar
  13. 13.
    H. Raether, “Excitation of Plasmons and Interband Transitions by Electrons”, Springer Tracts in Modern Physics, Vol. 88 (Springer-Verlag, Berlin, 1980) p. 50.Google Scholar
  14. 14.
    R. Uyeda, in “Morphology of Crystals”, edited by I. Sunagawa (Terra Scientific, Tokyo, 1987) Part B, Ch. 6.Google Scholar
  15. 15.
    J. Perel, J. F. Mahoney, S. Taylor, Z. Shanfield andC. Levi, in “Rapid Solidified Amorphous and Crystalline Alloys”, edited by B. H. Kear, B. C. Giessen and M. Cohen (North Holland, Amsterdam, 1982) p. 131.Google Scholar
  16. 16.
    P. J. Herley, W. Jones, T. G. Sparrow andB. G. Williams,Mater. Lett. 5 (1987) 333.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • P. J. Herley
    • 1
  • W. Jones
    • 2
  1. 1.Department of Materials Science and EngineeringState University of New YorkStony BrookUSA
  2. 2.Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations