Archiv für dermatologische Forschung

, Volume 241, Issue 4, pp 396–410 | Cite as

The fate of the nucleus in the hairless mouse epidermis

  • Olav Hilmar Iversen
  • Rolf Bjerknes
  • Nils Raknerud
  • Øyvind Skjaeggestad


Hairless mice were injected intraperitoneally with 50 µCi tritiated thymidine (3HTdr). At different time intervals after the injection, groups of four mice were sacrified. Horny material was removed from the skins by adhesive tape strippings or by abrasion of desiccated skin. The amount of radioactivity in the specimens was measured in a Packard Tri-Carb Liquid Scintillation Spectrometer. The results were interpreted also by means of simulation experiments with a mathematical model realized on an electronic computer, and by comparison with light and electron microscopical evidence. It is concluded that the amount of radioactivity present in the horny layer after a single flash labelling with3HTdr is primarily an index of the rate of breakdown of nuclear material at any moment. This breakdown process starts when the keratinocytes have passed about half their lifetime in the epidermis, and has its highest value about three days after a cell has been formed. A consequence of this conclusion is that the3HTdr method gives no information at all about the turn-over-time of the horny layer.


Thymidin Electronic Computer Adhesive Tape Nuclear Material Hairless Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Haarlosen Mäusen wurden 50 µCi Tritium-markiertes Thymidin (3HTdr) intraperitoneal verabreicht. In verschiedenen Zeitabständen nach der Injektion wurden jeweils 4 Tiere getötet. Die Hornschicht wurde entweder durch „stripping“ mit Tesafilm oder durch Abkratzen der getrockneten Haut gewonnen. Die Bestimmung der Radioaktivität erfolgte in einem Packard TriCarb Szintillationszähler. Die Ergebnisse wurden außerdem mit Hilfe eines Computers durch Simulierung der Versuche in einem mathematischen Modell und in einem Vergleich mit licht- und elektronenmikroskopischen Befunden dargestellt.

Die in der Hornschicht vorhandene Radioaktivität nach einem einzelnen3HTdr-Impuls wird in erster Linie als ein Maß für die Abbaugeschwindigkeit des Kernmaterials in dem jeweiligen Augenblick angesehen. Dieser Abbau beginnt, wenn die Keratinocyten ungefähr die Hälfte ihres Lebens hinter sich haben und erreicht sein Maximum 3 Tage nach der Bildung einer Zelle. Daraus ergibt sich die Schlußfolgerung, daß sich von der3HTdr-Markierung keine Aussage über die turn-over-Zeit der Hornschicht ableiten läßt. Die Veranschlagung von 1,5 Tagen durch Skjæggestad ist wahrscheinlich falsch, während die von Downes, Matoltsy u. Sweeney (1967) mitgeteilte Zeit von 4–5 Tagen eher richtig erscheint.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baden, H. P.: Thymine and uracil metabolism in the epidermis. J. invest. Derm.48, 235–239 (1967).Google Scholar
  2. Bern, H. A., Alfert, M., Blair, S. M.: Cytochemical studies of keratin formation and of epithelial metaplasia in the rodent vagina and prostata. J. Histochem. Cytochem.5, 105–119 (1957).Google Scholar
  3. Bernstein, I. A.: Relation of the nucleic acids to protein synthesis in the mammalian epidermis. The epidermis, pp. 471–483. Ed. Montagna and Lobitz. New York-London: Academic Press 1964.Google Scholar
  4. Bersaques, J. De: Nucleosidase in human epidermis and in normal and abnormal scales. J. invest. Derm.38, 13–135 (1962).Google Scholar
  5. —: Purine and pyridine metabolism in human epidermis. J. invest. Derm.48, 169–173 (1966).Google Scholar
  6. Block, W. D., Johnson D. V.: Studies of the enzymes of purine metabolism in skin. II. Nucleoside deaminases of rat skin. J. invest. Derm.23, 471–478 (1954).Google Scholar
  7. Cattaneo, S. M., Quastler, H., Sherman, F. G.: Proliferative cycle in the growing hair follicle of the mouse. Nature (Lond.)190, 923–924 (1961).Google Scholar
  8. Cutright, E. D., Bauer, H.: Cell renewal in the oral mucosa and skin of the rat. II. DNA conservation and reutilization during the renewal cycle in vivo and in tissue explants. Oral Surg.23, 260–277 (1967).Google Scholar
  9. Daoust, R., Amano, H.: Ribonuclease and deoxyribonuclease activities in rat and mouse stratified squamous epithelia and skin papillomas. J. Histochem. Cytochem.12, 429–437 (1964).Google Scholar
  10. Downes, A. M., Chapman, R. E., Till, A. R., Wilson, P. A.,: Proliferative cycle and fate of cell nuclei in wool follicles. Nature (Lond.)212, 477–479 (1966).Google Scholar
  11. —, Matoltsy, A. G., Sweeney, T. M.: Rate of turnover of the stratum corneum in hairless mice. J. invest. Derm.49, 400–405 (1967).Google Scholar
  12. Fukuyama, K., Bernstein, I. A.: Autoradiographic studies of the incorporation of thymidine-H3 into deoxyribonucleic acid in the skin of young rats. J. invest. Derm.36, 321–326 (1961).Google Scholar
  13. Hodgson, C.: Nucleic acids and their decomposition products in normal and pathological horny layers. J. invest. Derm.38, 69–78 (1962).Google Scholar
  14. Iversen, O. H.: Chalones of the skin. Ciba Symp. on Homeostatic Regulators. Ed. G. E. W. Wolstenholme and M. O'Connor. London: Churchill Ltd. 1969.Google Scholar
  15. — Bjerknes, R.: Kinetics of epidermal reaction to carcinogens. Acta path. microbiol. scand. Suppl.165 (1963).Google Scholar
  16. —, —, Devik, F.: Kinetics of cell renewal, cell migration and cell loss in the hairless mouse dorsal epidermis. Cell Tissue Kinet.1, 351–367 (1968).Google Scholar
  17. Jessen, H.: Two types of keratohyalin in granules. J. Ultrastruct. Res.33, 95 (1970).Google Scholar
  18. Pasteels, J., Bullough, W. S.: Augmentation expérimentale de la teneur en DNA des noyaux. Extrait des Arch. de Biologie64, 271–295 (1953).Google Scholar
  19. Pelc, S. R.: Metabolic activity of DNA as shown by autoradiographs. Lab. Invest.8, 225–233 (1959).Google Scholar
  20. —: The participation of the cell nucleus and its DNA in the formation of keratin. Exp. Cell Res. Suppl.6, 97–104 (1958).Google Scholar
  21. Raknerud, N.: Two types of keratohyalin in the epidermis of the mouse. J. Ultrastruct. Res. (in press).Google Scholar
  22. —, Hovig, T., Iversen, O. H.: The ultrastructure of the interfollicular epidermis of the hairless (hr/hr) mouse. I. Basal and granular layer. Virchows Arch. Abt. B Zellpath.8, 206–224 (1971).Google Scholar
  23. Santoianni, P., Ayala, M.: Fluorimetric ultramicroanalysis of deoxyribonucleic acid in human skin. J. invest. Derm.45, 99–103 (1965).Google Scholar
  24. —, Rothman, S.: Nucleic acid splitting enzymes in human epidermis and their possible role in keratinization. J. invest. Derm.37, 489–495 (1961).Google Scholar
  25. —, —: Deoxyribonucleic acid microdetermination in human epidermis. J. invest. Derm.40, 317–323 (1963).Google Scholar
  26. Schwarz, E.: Zum Schicksal der aus Nucleinsäuren beim Zellabbau während der epidermalen Verhornung freiwerdenden Pyrimidine. Arch. klin. exp. Derm.230, 437–443 (1967).Google Scholar
  27. Skjæggestad, Ø.: Experimental epidermal hyperplasia in mice relation to carcinogenesis. Acta path. microbiol. scand., Suppl.169 (1964).Google Scholar
  28. Steigleder, G. K., Raab, W.: The localization of ribonuclease and deoxyribonuclease activities in normal and psoriatic epidermis. J. invest. Derm.38, 209–214 (1962).Google Scholar
  29. Susi, F. R.: Studies of cellular renewal and protein synthesis in mouse oral mucosa utilizing H3-thymidine and H3-cystine. J. invest. Derm.51, 403–408 (1968).Google Scholar
  30. Tabachnick, J.: Studies on the biochemistry of epidermis. II. Some characteristics of deoxyribonucleases I and II of albino guinea pig epidermis and saline extracts of hair. J. invest. Derm.42, 471–478 (1964).Google Scholar
  31. —, Freed, R.: Demonstration of nucleases on mammalian skin surface and in saline extracts of hair. Nature (Lond.)190, 921–922 (1961).Google Scholar
  32. —, —: Guinea pig epidermal deoxyribonucleases. Fed. Proc.21, 2 (1962).Google Scholar
  33. Tvermyr, E., Fagereng, M.: Circadian rhythms in epidermal mitotic activity. Virchows Arch., Abt. B Zellpath.2, 318–325 (1969).Google Scholar
  34. Wheatley, V. R., Farber, E. M.: Studies on the chemical composition of psoriatic scales. J. invest. Derm.36, 199–211 (1961).Google Scholar
  35. —, —: Chemistry of psoriatic scales. II. Further studies of the nucleic acids and their catabolites. J. invest. Derm.39, 79–89 (1962).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Olav Hilmar Iversen
    • 1
  • Rolf Bjerknes
    • 1
  • Nils Raknerud
    • 1
  • Øyvind Skjaeggestad
    • 1
  1. 1.Institutt for Generell og Eksperimentell PatologiUniversity of OsloRikshospitaletNorway

Personalised recommendations