Skip to main content
Log in

Influence of Amphotericin, Amiloride, Ionophores, and 2,4-Dinitrophenol on the secretion of the isolated cat's pancreas

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The isolated cat pancreas was perfused with a Krebs-Henseleit-solution containing different concentrations of Amphotericin, Amiloride, Gramicidin, Dinitrophenol, Valinomycin, and Nigericin. In order to separate functionally the effects of these substances on the mitochondrial and the plasma membrane, we tested their influence on the secretory flow rate under aerobic and anaerobic conditions.

A Na+−K+- and a HCO3 -ATPase have been found in membrane fractions of pancreatic homogenates. Since there is a possibility that these enzymes are involved in active ion transport, we tested the effect of all substances on the level of activity of both Na+K+-ATPase and HCO3 -ATPase. The following were found:

  1. 1.

    The secretory flow rate under anaerobic conditions was about 10% of that observed under aerobic conditions. Omission of glucose from the perfusate decreased flow rate to nearly zero. α-ketoglutarate and fumarate did not increase secretion in the absence of glucose which indicates that secretion was maintained by energy from anaerobic glycolysis.

  2. 2.

    Amphotericin which increases the permeability of other membranes unspecifically, yielded an inhibition of pancreatic secretion under both aerobic and anaerobic conditions, presumably by an increase of the permeability of the luminal cell border. Amphotericin induced no effect on the Na+−K+-nor on the HCO3 -ATPase.

  3. 3.

    Amiloride (2–4×10−3M) which inhibits sodium influx into epithelial cells, decreased pancreatic secretion by up to 50% in both aerobic and anaerobic conditions. Amiloride also inhibited the Na+−K+-ATPase activity in vitro but was without effect on the HCO3 -ATPase. In small concentrations however Amiloride stimulated the Na+−K+-ATPase activity.

  4. 4.

    Gramicidin which creates rather unspecific channels for ions through membranes did not affect pancreatic secreatic secretion or ATPase activities.

  5. 5.

    Dinitrophenol decreased secretion by about 30–60% under aerobic conditions, which might be due to the known uncoupling effect on oxidative phosphorylation. DNP stimulated in vitro Na+−K+-ATPase activity, which, however, was not reflected in an increase of secretory flow rate under anaerobic conditions.

  6. 6.

    The ionophores Valinomycin and Nigericin, which increase membrane permeability to K+ and H+ ions in a variety of tissues, increased secretion up to 70% under anaerobic conditions but caused a decrease of 30%–90% under aerobic conditions. These findings suggest that both the plasma- and mitochondrial membrane must have been affected. Both ionophores stimulated the HCO3 -ATPase activity in vitro.

All tested substances except Gramicidin had an effect on pancreatic electrolyte secretion. Concerning the aerobic experiments, the inhibitory effect of Dinitrophenol and the ionophores might be due to uncoupling of oxidative phosphorylation.

The results of the anaerobic experiments are interpreted as being due to changes of cell membrane permeability.

As the effects of Nigericin, Valinomycin and Amiloride in the anaerobic experiments correspond to the effects of these substances on the ATPase activity, we suggest that these enzymes might be involved in the active transport processes of NaHCO3 -secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baer, J. E., Jones, C. B., Spitzer, S. A., Russo, H. F.: The potassium-sparing and natriuretic activity of N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride dileydrate (amiloride hydrochloride). J. Pharmacol. exp. Ther.157, 472–485 (1967).

    Google Scholar 

  2. Bartlett, G. R.: Phosphorus assay in column chromatography. J. biol. Chem.234, 466–468 (1959).

    Google Scholar 

  3. Bell, R. P.: The proton in chemistry. Ithaca, N. Y.: Cornell University Press 1959.

    Google Scholar 

  4. Bentley, P. J.: Amiloride: a potent inhibitor of sodium transport across the toad bladder. J. Physiol. (Lond.)195, 317–330 (1968).

    Google Scholar 

  5. Blum, A. L., Shah, G., Pierre, T. St., Helander, H. F., Sung, C. P., Wiebelhaus, V. D., Sachs, G.: Properties of soluble ATPase of gastric mucosa. II. Effect of HCO3 . Biochim. biophys. Acta (Amst.)249, 101–113 (1971).

    Google Scholar 

  6. Bonting, S. L., Caravaggio, L. L., Canady, M. R., Hawkins, V. M.: Studies on sodium-potassium-activated adenosine triphosphatase XI. The salt gland of the Herring Gull. Arch. Biochem. Biophys.106, 49–56 (1964).

    Google Scholar 

  7. Bonting, S. L., Hawkins, N. M., Canady, M. R.: Sodium potassium activated adenosine triphosphatase VII. Inhibition by erythrophoeum alkaloids. Biochem. Pharmacol.13, 13–22 (1964).

    Google Scholar 

  8. Carafoli, E., Rossi, C. S.: The effect of dinitrophenol on the permeability of the mitochondrial membrane. Biochem. biophys. Res. Commun.29, 153–157 (1967).

    Google Scholar 

  9. Case, R. M., Harper, A. A., Scratcherd, T.: Water and electrolyte secretion by the perfused pancreas of the cat. J. Physiol. (Lond.)196, 133–149 (1968).

    Google Scholar 

  10. Case, R. M., Harper, A. A.: Scratcherd, T.: Water and electrolyte secretion by the pancreas. In: Exocrine glands. Proc. of a Satellite Symp. of the XXIV. Intern. Congress of Physiol. Sciences, Ed. S. Y. Bothelo, F. P. Brooks, and W. B. Shelley, pp. 39–56. Philadelphia Univ. of Pennsylvania Press 1969.

    Google Scholar 

  11. Case, R. M., Laundy, T. J., Scratcherd, T.: Adenosine 3′,5′-monophosphate (cyclic AMP) as the intracellular mediator of the action of secretion on the exocrine pancreas. J. Physiol. (Lond.)204, 45P-47P (1969).

    Google Scholar 

  12. Cha, C. M.: Inactivation of oxidative and phosphorylative systems in mitochondria by dianemycin and nigericin. Ph. D. Thesis, University of Wisconsin 1962.

  13. Chappell, J. B., Crofts, A. R.: Gramicidin and ion transport in isolated liver mitochondria. Biochem. J.95, 393–402 (1965).

    Google Scholar 

  14. Cockrell, R. S., Harris, E. J., Pressman, B. C.: Energetic of potassium transport in mitochondria induced by valinomycin. Biochemistry5, 2326–2365 (1966).

    Google Scholar 

  15. Deuticke, B., Kim, M., Zöllner, Chr.: The influence of amphotericin B on the ion and nonelectrolyte permeability of the erythrocyte membrane. Pflügers Arch.335, R 60 (1972).

    Google Scholar 

  16. Dörge, A., Nagel, W.: Effect of amiloride on sodium transport in frog skin. Pflügers Arch.321, 91–101 (1970).

    Google Scholar 

  17. Fanestil, D. D., Hastings, A. B., Mahowald, T. A.: Environmental CO2 stimulation of mitochondrial adenosine triphosphatase activity. J. biol. Chem.238, 836–842 (1963).

    Google Scholar 

  18. Fiske, C. H., Subbarow, Y.: The colorimetric determination of phosphorus. J. biol. Chem.66, 375–400 (1925).

    Google Scholar 

  19. Ghosh, A., Ghosh, J. J.: Changes in the intracellular constituents of Candida albicans on nystatin and amphotericin B treatment. Ann. Biochem.23, 113–122 (1963).

    Google Scholar 

  20. Ghosh, A., Ghosh, J. J.: Release of intracellular constituents of Candida albicans in presence of polyene antibiotics. Ann. Biochem.23, 611–626 (1963).

    Google Scholar 

  21. Graven, S. N., Estrada-O, S., Lardy, H. A.: Alkali metal cation release and respiratory inhibition induced by nigericin in rat liver mitochondria. Proc. nat. Acad. Sci. (Wash.)56, 654–658 (1966).

    Google Scholar 

  22. Henderson, P. J. F., Mc Givan, J. D., Chapell, J. B.: The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes: The role of induced proton permeability. Biochem. J.111, 521–535 (1969).

    Google Scholar 

  23. Jackson, J. B., Crofts, A. R., von Stedingk, L. V.: Ion transport induced by light and antibiotics in chromatophores from Rhodospirillum rubrum. Europ. J. Biochem.6, 41–54 (1968).

    Google Scholar 

  24. Jørgensen, P. L.: Regulation of the (Na+K+) activated ATP hydrolyzing enzyme system in rat kidney. I. The effect of adrenalectomy and the supply of sodium on the enzyme system. Biochim. biophys. Acta (Amst.)151, 212–224 (1968).

    Google Scholar 

  25. Judah, J. D., McLean, A. E. M., Ahmed, K., Christie, G. S.: Active transport of potassium by mitochondria. II. Effect of substrates and inhibitors. Biochim. biophys. Acta (Amst.)94, 441–451 (1965).

    Google Scholar 

  26. Kasbekar, D. K., Durbin, R. P.: An adenosine triphosphatase from frog gastric mucosa. Biochim. biophys. Acta (Amst.)105, 472–482 (1965).

    Google Scholar 

  27. Kinsky, S. C.: Comparative response of mammalian erythrocytes and microbial protoplasts to polyene antibiotics and vitamin A. Arch. Biochem. Biophys.102, 180–188 (1963).

    Google Scholar 

  28. Kinsky, S. C., Avruch, J., Permutt, M., Rogers, H. B., Schonder, A. A.: The lytic effect of polyene antifungal antibiotics on mammalian erythrocytes. Biochem. biophys. Res. Commun.9, 503–507 (1962).

    Google Scholar 

  29. Kinsky, S. C., Gronau, G. R., Weber, M. M.: Interaction of polyene antibiotics with subcellular membrane systems. I. Mitochondria. Molec. Pharmacol.1, 190–201 (1965).

    Google Scholar 

  30. Lampen, J. O.: Interference by polyenic antifungal antibiotics (especially nystatin and filipin) with specific membrane functions. Symp. Soc. gen. Microbiol.16, 111–130 (1966).

    Google Scholar 

  31. Lampen, J. O., Arnow, P. M., Safferman, R. S.: Mechanism of protection by sterols against polyene antibiotics. J. Bact.80, 200–206 (1960).

    Google Scholar 

  32. Lange, S., Veit, C., Hegel, U., Gutsche, U.: Die Wirkung von Amilorid auf den Elektrolyttransport des Rattencolons. Pflügers Arch.332, R 23 (1972).

    Google Scholar 

  33. Lardy, H. A., Johnson, D., McMurray, W. C.: Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch. Biochem. Biophys.78, 587–597 (1958).

    Google Scholar 

  34. Lev, A. A., Buzhinsky, E. P.: Cation specificity of the model bimolecular phospholipid membranes with incorporated valinomycin. Tsitologia9, 102–106 (1967).

    Google Scholar 

  35. Lippe, C.: Effects of amphotericin B on thiourea permeability of phospholipid and cholesterol bilayer membranes. J. molec. Biol.35, 635–637 (1968).

    Google Scholar 

  36. Lowry, O. H., Rosebrough, H. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265–275 (1951).

    Google Scholar 

  37. Marini, F., Arnow, P., Lampen, J. O.: The effect of monovalent cations on the inhibition of yeast metabolism by nystatin. J. gen. Microbiol.24, 51–62 (1961).

    Google Scholar 

  38. Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Bodmin: Printed Glynn Research Ltd. 1966.

    Google Scholar 

  39. Montal, M., Chance, B., Lee, C. P.: Ion transport and energy conservation in submitochondrial particles. J. Membrane Biol.2, 201–234 (1970).

    Google Scholar 

  40. Moore, C., Pressman, B. C.: Mechanism of action of valinomycin on mitochondria. Biochem. biophys. Res. Commun.15, 562–567 (1964).

    Google Scholar 

  41. Mueller, P., Rudin, D. O.: Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem. biophys. Res. Commun.26, 398–404 (1967).

    Google Scholar 

  42. Petersen, O. H.: The ionic transports involved in the acetylcholine-induced change in membrane potential in acinar cells from salivary glands and their importance in the salivary secretion process. In: Symposia medica Hoechst. Electrophysiology of epithelial cells, pp. 207–221. Symposium Schloß Reinhartshausen, October 1970. Stuttgart-New York: F. K. Schattauer.

    Google Scholar 

  43. Poole, D. T., Butler, T. C., Williams, M. E.: Effects of valinomycin, ouabain and potassium on glycolysis and intracellular pH of Ehrlich ascites tumor cells. J. Membrane Biol.5, 261–276 (1971).

    Google Scholar 

  44. Pressman, B. C.: Induced active transport of ions in mitochondria. Proc. nat. Acad. Sci. (Wash.)53, 1076–1083 (1965).

    Google Scholar 

  45. Pressman, B. C.: Ionophorous antibiotics as models for biological transport. Fed. Proc.27, 1283–1288 (1968).

    Google Scholar 

  46. Pressman, B. C.: Application of ionophores to the study of membrane transport and bioenergetics. 8th Intern. Congr. of Biochemistry, Switzerland 1970, 150–152.

  47. Ramsay, J. A., Brown, R. H. J., Croghan, P. C.: Electrometric titration of chloride in small volumes. J. exp. Biol.32, 822–829 (1955).

    Google Scholar 

  48. Ridderstap, A. S., Bonting, S. L.: Na-K-activated adenosine triphosphatase and pancreatic secretion in the dog. Amer. J. Physiol.216, 547–553 (1969).

    Google Scholar 

  49. Rutten, W. J., de Pont, J. J. H. H. M., Bonting, S. L.: Adenylate cyclase in the rat pancreas properties and stimulation by hormones. Biochim. biophys. Acta (Amst.)274, 201–213 (1972).

    Google Scholar 

  50. Schulz, I.: Influence of bicarbonate, CO2 and glycodiazine buffer on the secretion of the isolated cat's pancreas. Pflügers Arch.329, 283–306 (1971).

    Google Scholar 

  51. Sessa, G., Weissman, G.: Effect of polyene antibiotics on phospholipid spherules containing varying amounts of charged components. Biochim. biophys. Acta (Amst.)135, 416–426 (1967).

    Google Scholar 

  52. Shavit, N., Dilley, R. A., San Pietro, A.: Ion translocation in isolated chloroplasts. Uncoupling of photophosphorylation and translocation of K+ and H+ ions, induced by nigericin. Biochemistry7, 2356–2363 (1968).

    Google Scholar 

  53. Simon, B., Kinne, R., Sachs, G.: The presence of a HCO3 -ATPase in pancreatic tissue. Biochim. biophys. Acta (Amst.)282, 293–300 (1972).

    Google Scholar 

  54. Simon, B., Thomas, L.: HCO3 stimulated ATPase from mammalian pancreas. Properties and its arrangement with other enzyme activities. Biochim. biophys. Acta (Amst.)288, 434–442 (1972).

    Google Scholar 

  55. Slater, E. C.: Mechanism of energy conservation in mitochondrial oxido-reductions. In: Regulation of metabolic processes in mitochondria. Eds. J. M. Tager, S. Papa, E. Quagliariello, and E. C. Slater. BBA Library vol. 7, pp. 166–178 (1969).

  56. Steinmetz, P. R., Lawson, Lois R.: Defect in urinary acidification induced in vitro by amphotericin B. J. clin. Invest.49, 596–601 (1970).

    Google Scholar 

  57. Sutton, D. D., Arnow, P. M., Lampen, J. O.: Effect of high concentrations of nystatin upon glycolysis in yeast. Proc. Soc. exp. Biol. (N.Y.)108, 170–175 (1961).

    Google Scholar 

  58. Thore, A., Keister, D. L., Shavit, N., San Pietro, A.: Effects of antibiotics on light induced proton movements and ATP formation in chromatophores of rhodospirillum rubrum. Progr. Photosynth. Res.3, 1402–1409 (1969).

    Google Scholar 

  59. Tosteson, D. C., Cook, P., Andreoli, Th., Tieffenberg, M.: The effect of valinomycin on potassium and sodium permeability of HK and LK sheep red cells. J. gen. Physiol.50, 2513–2525 (1967).

    Google Scholar 

  60. Urry, D. W.: Protein conformation in biomembranes: optical rotation and absorption of membrane suspensions. Biochim. biophys. Acta (Amst.)265, 115–168 (1972).

    Google Scholar 

  61. Wiebelhaus, V. D., Sung, C. P., Helander, H. F., Shah, G., Blum, A. L., Sachs, G.: Solubilization of anion ATPase from Necturus oxyntic cells. Biochim. biophys. Acta (Amst.)241, 49–56 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wizemann, V., Schulz, I. Influence of Amphotericin, Amiloride, Ionophores, and 2,4-Dinitrophenol on the secretion of the isolated cat's pancreas. Pflugers Arch. 339, 317–338 (1973). https://doi.org/10.1007/BF00594167

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00594167

Key words

Navigation