Skip to main content
Log in

A photoelectric diameter gauge utilizing the image sensor

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Instruments and Techniques
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

We have designed and constructed a blood vessel diameter gauge, utilizing a high resolving power and stability of the image sensor which has become of major interest lately as a new photoelectric transducer. The distinct feature of the gauge is summarized as follows. (1) Contact-free measurements of blood vessel diameter (1–14 mm) are possible. (2) The cuff-type probe is small in size and easy to put to use. (3) The lightguide consisting of optical fibers makes incident light cold. (4) The resolving power of the gauge is 28 μm in principle. (5) The frequency response of the gauge is flat up to 100 Hz. A few results of its preliminary application to in vitro and in vivo experiments are also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auer, L.: A method for continuous monitoring of pial vessel diameter changes and its value for dynamic studies of the regulation of cerebral circulation. A preliminary report. Pflügers Arch.373, 195–198 (1978)

    Google Scholar 

  • Asano, M., Yoshida, K., Tatai, K.: Microphotoelectric plethysmograph using a rabbit ear chamber. J. Appl. Physiol.20, 1056–1062 (1965)

    Google Scholar 

  • Baez, S.: Recording of microvascular dimensions with an imagesplitter television microscope. J. Appl. Physiol.21, 299–301 (1966)

    Google Scholar 

  • Barnett, G. O., Mallos, A. J., Shapiro, A.: Relationship between aortic pressure and diameter in the dog. J. Appl. Physiol.16, 545–548 (1961)

    Google Scholar 

  • Bergel, D. H.: The static elastic properties of the arterial wall. J. Physiol.156, 445–457 (1961)

    Google Scholar 

  • Davis, D. L., Dow, P.: Intraluminal pressure and rate and magnitude of arterial constrictor responses. Am. J. Physiol.222, 415–420 (1972)

    Google Scholar 

  • Froneck, K., Schmid-Schoenbein, G., Fung, Y. C.: A noncontact method for three-dimensional analysis of vascular elasticity in vivo and in vitro. J. Appl. Physiol.40, 634–637 (1976)

    Google Scholar 

  • Gow, B. S.: An electrical caliper for measurement of pulsatile arterial diameter changes in vivo. J. Appl. Physiol.21, 1122–1126 (1966)

    Google Scholar 

  • Greenfield, J. C., Patel, D. J.: Relationship between pressure and diameter in the ascending aorta of man. Circulat. Res.10, 778–781 (1962)

    Google Scholar 

  • Hatch, R. C., Hughes, R. W., Bozirich, H.: Effects of resting blood pressure on pressure responses to drugs and carotid occlusion. Am. J. Physiol.213, 1515–1519 (1967)

    Google Scholar 

  • Intaglietta, M., Tompkins, W. R.: Microvascular measurements by video image shearing and splitting. Microvasc. Res.5, 309–312 (1973)

    Google Scholar 

  • Johnson, P. C.: Measurement of microvascular dimensions in vivo. J. Appl. Physiol.23, 593–596 (1967)

    Google Scholar 

  • Johnson, P. C., Greatbatch, W. H.: The angiometer: A flying spot microscope for measuring blood vessel diameter. Methods Med. Res.,11, 220–227 (1966)

    Google Scholar 

  • Korol, B., Brown, M. L.: Intluence of existing arterial pressure on autonomic drug responses. Am. J. Physiol.123, 112–114 (1960)

    Google Scholar 

  • Luchsinger, P. L., Sachs, M., Patel, D. J.: Pressure-radius relationships in large blood vessels of man. Circulat. Res.11, 885–889 (1962)

    Google Scholar 

  • Mackenzie, E. T., Strandgaard, S., Graham, D. I., Jones, J. V., Harper, M.: Effects of acutely induced hypertension in cats on pial arteriolar caliber, local cerebral blood flow, and the blood-brain barrier. Circulat. Res.39, 33–41 (1976)

    Google Scholar 

  • Mallos, A. J.: An electrical caliper for continuous measurement of relative displacement. J. Appl. Physiol.17, 131–134 (1962)

    Google Scholar 

  • Meyers, H. A., Honig, C. R.: Influence of initial resistance on magnitude of response to vasomotor stimuli. Am J. Physiol.216, 1429–1436 (1969)

    Google Scholar 

  • Patel, D. J. Schilder, D. P., Mallos, A. J.: Mechanical properties and dimensions of the major pulmonary arteries. J. Appl. Physiol.15, 92–96 (1960)

    Google Scholar 

  • Peterson, L. H., Jensen, R. E., Parnell, J. Mechanical properties of arteries in vivo. Circulat. Res.8, 622–639 (1960)

    Google Scholar 

  • Pieper, H. P., Paul, L. T.: Catheter-tip gauge for measuring blood flow velocity and vessel diameter in dogs. J. Appl. Physiol.24, 259–261 (1968)

    Google Scholar 

  • Wahl, M., Kuschinsky, W., Bosse, O., Thurau, K.: Dependency of pial arterial and arteriolar diameter on perivascular osmolarity in the cat. Circulat. Res.32, 162–169 (1973)

    Google Scholar 

  • Wetterer, E., Busse, R., Bauer, R. D., Schabert, A., Summa, Y.: Photoelectric device for contact-free recording of the diameter of exposed arteries in situ. Pflügers Arch.368, 149–152 (1977)

    Google Scholar 

  • Wiederhielm, C. A.: Distensibility characteristics of small blood vessels. Fed. Proc.24, 1075–1084 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakaguchi, M., Ohhashi, T. & Azuma, T. A photoelectric diameter gauge utilizing the image sensor. Pflugers Arch. 378, 263–268 (1979). https://doi.org/10.1007/BF00592745

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00592745

Key words

Navigation