Pflügers Archiv

, Volume 346, Issue 1, pp 39–48 | Cite as

Induction of Na K ATPase in the proximal and distal convolution of the rat nephron after uninephrectomy

  • Udo Schmidt
  • Ulrich C. Dubach
  • Barbara Funk
  • Kaija Paris


Using refinements of quantitative histochemistry, i.e. oil-well technique and enzymaticP i analysis combined with an enzymatic cycling system, the activity of Na K ATPase (E.C., an enzyme which is integrated in the transmembrane cation transport, was measured in single dissected segments of the proximal and distal convolution from the superficial nephron of the rat kidney following uninephrectomy. In the distal convolution an acute rise in Na K ATPase activity was apparent already during the first day after uninephrectomy, whereas in the proximal convolution the first significant increase occurred seven days after surgery. These data indicate a rapid adaptation of Na K ATPase which is limited to the distal tubule. The difference between the proximal and distal tubule confirms the functional correlations to uninephrectomy with more reabsorptive work in the distal tubule per unit length. Na K ATPase seems to have a special functional meaning for the distal tubule in regulating cation transport.

Key words

Na K ATPase Proximal Tubule Distal Tubule Rat Kidney Uninephrectomy Quantitative Histochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, J. C., Lee, J. B.: Effect of osmolality on Na K ATPase in outer renal medulla. Amer. J. Physiol.219, 1742–1745 (1970)Google Scholar
  2. 2.
    Anderson, W. A.: The fine structure of compensatory growth in the rat kidney after unilateral nephrectomy. Amer. J. Anat.121, 217–248 (1967).Google Scholar
  3. 3.
    Dicker, S. E., Shirley, D. G.: Compensatory renal growth after unilateral nephrectomy in the new-born rat. J. Physiol. (Lond.)228, 193–202 (1973)Google Scholar
  4. 4.
    Fanestil, D. D.: Renal Na K ATPase relationship to total function renal mass. Nature (Lond.)218, 176–177 (1968).Google Scholar
  5. 5.
    Farquhar, J. K., Scott, W. N., Coe, F. L.: Hexose monophosphate shunt activity in compensatory renal hyperthrophy. Proc. Soc. exp. Biol. (N. Y.)129, 809–812 (1968)Google Scholar
  6. 6.
    Györy, A. Z., Kinne, R.: Energy source for transepithelial sodium transport in rat renal proximal tubules. Pflügers Arch.327, 234–260 (1971)Google Scholar
  7. 7.
    Hayslett, J. P., Kashgarian, M., Epstein, F. H.: Functional correlates of compensatory renal hypertrophy. J. Clin. Invest.47, 774–782 (1968)Google Scholar
  8. 8.
    Janicki, R. H., Argyris, T. S.: Kidney growth and adaptation of phosphate-dependent glutaminase in the mouse. Amer. J. Physiol.217, 1389–1395 (1969)Google Scholar
  9. 9.
    Johnson, H. A., Amendola, F.: Mitochondrial proliferation in compensatory growth of the kidney. Amer. J. Path.54, 35–45 (1969)Google Scholar
  10. 10.
    Johnson, H. A., Vera Roman, J. M.: Compensatory renal enlargement. Hypertrophy versus hyperplasia. Amer. J. Path.49, 1–13 (1966)Google Scholar
  11. 11.
    Jørgensen, P. L.: Regulation of the (Na+ K+) activated ATP hydrolyzing enzyme system in rat kidney. II. The effect of aldosterone on the activity in kidneys of adrenalectomized rats. Biochim. biophys. Acta (Amst.)192, 326–329 (1969)Google Scholar
  12. 12.
    Jørgensen, P. L.: Dissociation between compensatory renal growth and induction of (Na++K+)-ATPase in rat kidney after uninephrectomy. Experientia (Basel)27, 527 (1971)Google Scholar
  13. 13.
    Katz, A. I., Epstein, F. H.: Role of sodium-potassium-activated adenosine triphosphatase in reabsorption of sodium by kidney. J. clin. Invest.46, 1999–2011 (1967)Google Scholar
  14. 14.
    Katz, A. I., Genant, H. K.: Effect of extracellular volume expansion on renal cortical and medullary Na K ATPase. Pflügers Arch.330, 136–148 (1971)Google Scholar
  15. 15.
    Kiil, F., Knut, A., Refsum, H. E.: Renal sodium transport and oxygen consumption. Amer. J. Physiol.201, 511–516 (1961)Google Scholar
  16. 16.
    Kinne, R., Schmitz, E. J., Kinne-Saffran, E. M.: The localization of the Na K ATPase in the cells of rat kidney cortex. A study on isolated plasma membranes. Pflügers Arch.329, 191–206 (1971)Google Scholar
  17. 17.
    Malt, R. A.: Compensatory growth of the kidney. New Engl. J. Med.280, 1446–1459 (1969)Google Scholar
  18. 18.
    Potter, D. E., Taggart, R., Holliday, M. A.: Acute functional changes in the rat following uninephrectomy. Fed. Proc.27, 630 (1968)Google Scholar
  19. 19.
    Rea, C., Segal, S.: ATP content of rat kidney cortex slices: Relation to α-aminoisobutyric acid uptake. Kidney Intern.2, 101–106 (1972)Google Scholar
  20. 20.
    Royce, P. C.: Role of renal uptake of plasma protein in compensatory renal hypertrophy. Amer. J. Physiol.212, 924–930 (1967)Google Scholar
  21. 21.
    Schmidt, U., Dubach, U. C.: Quantitative Histochemie am Nephron. Progr. Histochem. Cytochem.2, 185–298 (1971)Google Scholar
  22. 22.
    Schmidt, U., Dubach, U. C., Bieder, I., Funk, B.: Na K stimulated adenosine triphosphatase: Intracellular localization within the proximal tubule of the rat nephron. Pflügers Arch.330, 265–270 (1971)Google Scholar
  23. 23.
    Schmidt, U., Torhorst, J., Huguenin, M., Dubach, U. C., Bieder, I., Funk, B.: Acute renal failure after folate: Na K ATPase in isolated rat renal tubule. Ultramicrochemical and clinical studies. Europ. J. clin. Invest.3, 169–178 (1973)Google Scholar
  24. 24.
    Weinman, E. J., Renquist, K., Stroup, R., Kashgarian, M., Hayslett, J. P.: Increased tubular reabsorption of sodium in compensatory renal growth. Amer. J. Physiol.224, 565–571 (1973)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Udo Schmidt
    • 1
    • 2
  • Ulrich C. Dubach
    • 1
    • 2
  • Barbara Funk
    • 1
    • 2
  • Kaija Paris
    • 1
    • 2
  1. 1.Enzymlaboratorium der Medizinischen PoliklinikDep. für Innere Medizin der Universität BaselSchweiz
  2. 2.Pathologisches Institut der Universität TübingenGermany

Personalised recommendations