Pflügers Archiv

, Volume 349, Issue 3, pp 203–213 | Cite as

Oxygenation dependent variations of the Bohr coefficient related to whole blood and erythrocyte pH

Effect of lactic and carbonic acid
  • Ulrich Meier
  • Dieter Böning
  • Howard J. Rubenstein


The Bohr effect related to whole blood (Be) and erythrocyte pH (Bi) was determined over a wide oxygen saturation range at an almost constant 2,3-diphosphoglycerate concentration. In two different sets of experiments acidification was caused either by fixed acid (lactic acid) or by CO2. Fixed acid-induced Bohr coefficients can be approximated by a second-order function of O2 saturation with a maximum at mid-saturation range. CO2-inducedBe andBi values yield a third-order relationship with highest results at low O2 saturation. The ratioBi/Be with respect to fixed acid-acidification exhibits a positive correlation with oxygenation, whereas the corresponding ratio referring to CO2 does not. For this different behavior a possibly more pronounced diminution of the Haldane effect, i.e. oxygen-linked proton release, in the presence of fixed acid is discussed. The physiological importance of the magnitude of CO2-inducedBi values at low O2 saturation is emphasized.

Key words

Blood Bohr Effect Erythrocyte pH Carbon Dioxide Lactic Acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bohr, C., Hasselbalch, K., Krogh, A. S.: Über einen in biologischer Beziehung wichtigen Einfluß, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand. Arch. Physiol.16, 402–412 (1904)Google Scholar
  2. 2.
    Bursaux, E., Freminet, A., Poyart, C. F.: The Bohr effect, the Donnan equilibrium and the estimation ofP 50 in human whole blood. Bull. Physio-Path. Resp.8, 755–768 (1972)Google Scholar
  3. 3.
    Dixon, W. J. (Edit.): Biomedical computer programs. University of California Press. Program Nr. BMD 05 R (1973)Google Scholar
  4. 4.
    Duhm, J.: Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pflügers Arch.326, 341–356 (1971)Google Scholar
  5. 5.
    Duhm, J., Gerlach, E.: On the mechanisms of hypoxia-induced increase of 2,3-diphosphoglycerate in erythrocytes. Pflügers Arch.326, 254–269 (1971)Google Scholar
  6. 6.
    Funder, J., Wieth, J. O.: Chloride and hydrogen ion distribution between human red cells and plasma. Acta physiol. scand.68, 234–245 (1966)Google Scholar
  7. 7.
    Garby, L., Robert, M., Zaar, B.: Proton- and carbamino-linked oxygen affinity of normal human blood. Acta physiol. scand.84, 482–492 (1972)Google Scholar
  8. 8.
    Hilpert, P., Fleischmann, R. G., Kempe, D., Bartels, H.: The Bohr effect related to blood and erythrocyte pH. Amer. J. Physiol.205, 337–340 (1963)Google Scholar
  9. 9.
    Kilmartin, J. V., Rossi-Bernardi, L.: Inhibition of CO2 combination and reduction of the Bohr effect in hemoglobin chemically modified at its α-amino-groups. Nature (Lond.)222, 1234–1246 (1969)Google Scholar
  10. 10.
    Krimsky, J.:d-glycerate-2,3-diphosphat. In H. V. Bergmeyer: Methoden der Enzymatischen Analyse. Weinheim/Bergstr.: Verlag Chemie 1970Google Scholar
  11. 11.
    Margaria, R., Green, A. A.: The first dissociation constant, pK1, of carbonic acid in hemoglobin solutions and its relation to the existence of a combination of hemoglobin with carbon dioxide. J. biol. Chem.102, 611–634 (1933)Google Scholar
  12. 12.
    Meldrum, N. V., Roughton, F. J. W.: The state of carbon dioxide in blood. J. Physiol. (Lond.)80, 143–170 (1933)Google Scholar
  13. 13.
    Naeraa, N., Petersen, E. S., Boye, E., Severinghaus, J. W.: pH and molecular CO2 components of the Bohr effect in human blood. Scand. J. clin. Lab. Invest.18, 96–102 (1966)Google Scholar
  14. 14.
    Perutz, M. F.: Stereochemistry of cooperative effects in hemoglobin. Haemhaem interaction and the problem of allostery. The Bohr effect and combination with organic phosphates. Nature (Lond.)228, 726–739 (1970)Google Scholar
  15. 15.
    Rooth, G., Caligara, F.: The influence of metabolic acid base variation on the oxygen dissociation curve. Clin. Sci.21, 393–401 (1961)Google Scholar
  16. 16.
    Rossi-Bernardi, L., Roughton, F. J. W.: The specific influence of carbon dioxide and carbamate compounds on the buffer power and Bohr effects in human hemoglobin solutions. J. Physiol. (Lond.)189, 1–29 (1967)Google Scholar
  17. 17.
    Roughton, F. J. W.: Some recent work on the interactions of oxygen, carbon dioxide and hemoglobin. Biochem. J.117, 801–812 (1970)Google Scholar
  18. 18.
    Schweigart, U., Böning, D., Tibes, U., Hemmer, B.: The influence of physical activity on the 2,3-diphosphoglycerate concentration of erythrocytes and the oxygen dissociation curve in men. In: Gerlach, E., Moser, K., Deutsch, E., Wilmanns, W., Ed.: Erythrocytes, thrombocytes, leukocytes. IInd Int. Symp. Vienna (1972), pp. 168–170. Stuttgart: G. Thieme 1973Google Scholar
  19. 19.
    Severinghaus, J. W.: Blood gas calculator. J. appl. Physiol.21, 1108–1116 (1966)Google Scholar
  20. 20.
    Siggaard-Andersen, O.: The acid-base status of the blood. Copenhagen: Munksgaard 1964Google Scholar
  21. 21.
    Siggaard-Andersen, O.: Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. I. Studies on erythrolysate. Scand. J. clin. Lab. Invest.27, 331–360 (1971)Google Scholar
  22. 22.
    Siggaard-Andersen, O., Rörth, M., Nörgaard-Pedersen, B., Andersen, O. S., Johansen, E.: Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. IV. Thermo-dynamical relationship between the variables. Scand. J. clin. Lab. Invest.29, 303–320 (1972)Google Scholar
  23. 23.
    Siggaard-Andersen, O., Salling, N.: Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. II. Studies on whole blood. Scand. J. clin. Lab. Invest.27, 361–366 (1971)Google Scholar
  24. 24.
    Siggaard-Andersen, O., Salling, N., Nörgaard-Pedersen, B., Rörth, M.: Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. III. Comparison of the Bohr effect and the Haldane effect. Scand. J. clin. Lab. Invest.29, 185–193 (1972)Google Scholar
  25. 25.
    Tibes, U., Hemmer, B., Schweigart, U., Böning, D., Fotescu, D.: Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pflügers Arch.347, 145–158 (1974)Google Scholar
  26. 26.
    Van Slyke, D. D., Wu, R., McClean, F.: Studies of gas and electrolyte equilibria in the blood. V.: Factors controlling the electrolyte and water distribution in the blood. J. biol. Chem.56, 765–849 (1923)Google Scholar
  27. 27.
    Wranne, B., Woodson, R. D., Detter, J. C.: Bohr effect: interaction between H+, CO2 and 2,3-DPG in fresh and stored blood. J. appl. Physiol.32, 749–754 (1972)Google Scholar
  28. 28.
    Wyman, J.: Heme proteins. Advanc. Protein Chem.4, 407–531 (1948)Google Scholar
  29. 29.
    Wyman, J.: Linked functions and reciprocal effects. Advanc. Protein Chem.19, 223–286 (1964)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Ulrich Meier
    • 1
  • Dieter Böning
    • 1
  • Howard J. Rubenstein
    • 1
  1. 1.Physiologisches Institut der Deutschen Sporthochschule KölnKölnFederal Republic of Germany

Personalised recommendations