Pflügers Archiv

, Volume 309, Issue 1, pp 11–20 | Cite as

Reizfrequenzkorrelierte “untersetzte” neuronale Entladungsperiodizität im Colliculus inferior und im corpus geniculatum mediale

  • E. David
  • P. Finkenzeller
  • S. Kallert
  • W. D. Keidel
Article

Zusammenfassung

Die in der Literatur für alle Teile der Hörbahn unterhalb des Geniculatum mediale beschriebenen reizkorrelierten Entladungsperiodizitäten einzelner Neurone wurden für den Colliculus inferior bestätigt. Darüber hinaus wird über eine ganz andersartige Entladungsperiodizität im Geniculatum mediale berichtet. Davon ausgehend werden Strukturmodelle für die neuronale zeitliche Koinzidenzmessung angegeben. Schließlich wird auf eine Unterscheidungsmöglichkeit von intramodalitätsspezifischen und intramodalitätsunspezifischen neuronalen Verarbeitungsmechanismen hingewiesen.

Schlüsselwörter

Gehör Colliculus inferior Geniculatum mediale Frequenzdiskrimination 

“Demultiplicated” neuronal discharge periodicities correlated with stimulus frequency in colliculus inferior and geniculatum mediale

Summary

The stimulus correlated discharge periodicities of single neurons described in the literature for all parts of the acoustic channel below the geniculatum mediale were confirmed for the colliculus inferior. Furthermore a quite different kind of discharge periodicity in the geniculatum mediale is reported. With these results structure models are given for the neuronal temporal measurement of coincidence. Finally a possibility of discrimination between intra-modality-specific and intra-modality-nonspecific processing mechanism is shown.

Key-Words

Hearing Inferior Colliculus Geniculatum Mediale Frequency Discrimination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Békésy, G. v.: Synchronism of neural discharges and their demultiplication in pitch perception on the skin and in hearing. J. acoust. Soc. Amer.31, 338 (1959).Google Scholar
  2. — Hearing theories and complex sounds. J. acoust. Soc. Amer.35, 588–601 (1963).Google Scholar
  3. David, E., P. Finkenzeller, S. Kallert, u.W. D. Keidel: Die Bedeutung der temporalen Hemmung im Bereich der akustischen Informationsverarbeitung. Pflügers Arch. ges. Physiol.298, 322–335 (1968a).Google Scholar
  4. ————: Die Bed Mikroelektroden ableitbare Reaktion einzelner Elemente des colliculus inferior und des corpus geniculatum mediale auf akustische Reize verschiedener Form und verschiedener Intensität. Pflügers Arch. ges. Physiol.299, 83–93 (1968b).Google Scholar
  5. Derbyshire, A. J., andH. Davis: The action potentials of the auditory nerves. Amer. J. Physiol.113, 476–504 (1935).Google Scholar
  6. Galambos, R., andH. Davis: Inhibition of activity in single auditory nerve fibers by acoustic stimulation. J. Neurophysiol.7, 287–303 (1944).Google Scholar
  7. —, andH. Davis: The response of single nerve fibers to acoustic stimulation. J. Neurophysiol.6, 39–58 (1943).Google Scholar
  8. —,J. Schwarzkopff, andA. Rupert: Microelectrode study of superior olivary nuclei. Amer. J. Physiol.197, 527–536 (1959).Google Scholar
  9. Gerard, J. M., W. H. Marshall, andL. J. Saul: Electrical activity of the cat's brain. Arch. Neurol. Psychiat. (Chic.)36, 675–735 (1936).Google Scholar
  10. Goldberg, J. M., andW. D. Neff: Frequency discrimination after bilateral ablation of cortical auditory areas. J. Neurophysiol.24, 119–128 (1961).Google Scholar
  11. ——: Frequency discrimination after bilateral section of the brachium of the inferior colliculus. J. comp. Neurol.116, 265–290 (1961/62).Google Scholar
  12. Hilali, S., andI. C. Whitfield: Response of the trapezoid body to acoustic stimulation with pure tones. J. Physiol. (Lond.)122, 158–171 (1953).Google Scholar
  13. Hind, J. E., D. J. Anderson, J. F. Brugge, andJ. E. Rose: Coding of information pertaining to paired low-frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol.30, 794–816 (1967).Google Scholar
  14. Katsuki, Y., T. Sumi, H. Uchiyama, andT. Watanabe: Electric responses of auditory neurons in cat to sound stimulation. J. Neurophysiol.21, 569–588 (1958).Google Scholar
  15. Keidel, W. D.: Vibrationsrezeption. Der Erschütterungssinn des Menschen. Erlanger Forschungen, Reihe B, Naturwissenschaften, Bd. 2, Universitätsbund, Erlangen 1956.Google Scholar
  16. —: Informationsphysiologische Aspekte des Hörens. Studium Generale22, 49–82 (1969).Google Scholar
  17. Kemp, H. E., G. E. Coppée, andE. H. Robinson: Electric responses of the brain stem to unilateral auditory stimulation. Amer. J. Physiol.120, 304–315 (1937).Google Scholar
  18. Kiang, N. Y. S., R. R. Pfeiffer, W. B. Warr, andA. S. Backus: Stimulus coding in the cochlear nucleus. Ann. Otol74, 463–484 (1965).Google Scholar
  19. Magoun, H. W.: The waking brain. Springfield, Ill.: Ch. C. Thomas 1960.Google Scholar
  20. Moushegian, G., A. L. Rupert, andT. L. Langford: Stimulus coding by medial superior olivary neurons. J. Neurophysiol.30, 1239–1261 (1967).Google Scholar
  21. Neff, W. D.: Role of the auditory cortex in sound discrimination. In: Neural Mechanism of the Auditory and Vestibular Systems. Ed.G. L. Rasmussen, W. F. Windle. Capt. 15, pp. 211–216 (1960).Google Scholar
  22. Pfeiffer, R. R.: Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp. Brain Res.1, 220–235 (1966).Google Scholar
  23. Rose, J. E., J. F. Brugge, D. J. Anderson, andJ. E. Hind: Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol.30, 769–793 (1967).Google Scholar
  24. N. B. Gross, C. D. Geisler, andJ. E. Hind: Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. J. Neurophysiol.29, 288–314 (1966).Google Scholar
  25. Rupert, A., G. Moushegian, andR. Galambos: Unit responses to sound from auditory nerve of the cat. J. Neurophysiol.26, 449–465 (1963).Google Scholar
  26. Saul, L. J., andH. Davis: Electrical phenomena of the auditory mechanism. Trans. Amer. otol. Soc.22, 137–145 (1932).Google Scholar
  27. Tasaki, I.: Nerve impulses in individual auditory nerve fibers of guinea pig. J. Neurophysiol.17, 97–122 (1954).Google Scholar
  28. Wever, E. G.: Theory of hearing. New York: Wiley 1949.Google Scholar
  29. —, andG. W. Bray: The nature of the acoustic response: The relation between sound frequency and frequency of impulses in the auditory nerve. J. exp. Psychol.13, 373–387 (1930).Google Scholar
  30. Whitfield, I. C.: Electrophysiology of the central auditory pathway. Brit. med. Bull.12, 105 (1956).Google Scholar
  31. Worden, F. G., andJ. T. Marsh: Frequency-following (microphonic like) neural responses evoked by sound. Electroenceph. clin. Neurophysiol.25, 42–52 (1968).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • E. David
    • 1
  • P. Finkenzeller
    • 1
  • S. Kallert
    • 1
  • W. D. Keidel
    • 1
  1. 1.I. Physiologisches Institut der Universität ErlangenErlangenDeutschland

Personalised recommendations