Advertisement

Pflügers Archiv

, Volume 334, Issue 4, pp 293–302 | Cite as

Mesure de la vitesse de renouvellement du lactate chez le rat par perfusion de 14-C-U (l) lactate

  • A. Freminet
  • E. Bursaux
  • C. F. Poyart
Article

Lactate turnover in rats using14C-U-(l) lactate

Summary

  1. 1.

    Lactate turnover was measured in 24 anesthetized rats using14C-U-(l) Lactate with the priming dose-infusion technique.

     
  2. 2.

    14C Lactate in blood was determined with a specific radio-enzymatic micromethod.

     
  3. 3.

    Lactate turnover increases with blood lactate concentration in the range 0.5 to 3 mM. In a steady state system this relationship means that a new equilibrium may be achieved at a higher pool level, between lactate production and utilization.

     
  4. 4.

    Comparing available data in four mammalian species lactate turnover at normal lactate levels was found to be approximately constant when computed on a body surface unit basis.

     

Key words

Lactate Turnover l-Lactate14C (U) Hypoxaemia Rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Adolph, E. F.: Quantitative relation in the physiological constitution of mammals. Science109, 579–585 (1949).Google Scholar
  2. Altman, P. L., Dittmer, D. S.: Metabolism. Biological Handbook. Federation of American societies of experimental Biology. Bethesda, Maryland 1968.Google Scholar
  3. Annison, E. F., Lindsay, D. B., White, R. R.: Metabolic interrelation of glucose and lactate in sheep. Biochem. J.88, 243–248 (1963).Google Scholar
  4. Baumann, R., Bauer, Ch., Bartels, H.: Influence of chronic and acute hypoxia on oxygen affinity and red cells 2–3 diphosphoglycerate of rats and guinea pigs. Resp. Physiol.11, 135–144 (1971).Google Scholar
  5. Bergmeyer: Methods of enzymatic analysis. Ed. Bergmeyer. Academic press 1965.Google Scholar
  6. Cain, S. M.: Effect of PCO2 on the relation of lactate and excess lactate to O2 deficit. Amer. J. Physiol.214, 1322–1327 (1968).Google Scholar
  7. Depocas, F., Minaire, Y., Chatonnet, J.: Rates of formation and oxidation of lactic acid in dogs at rest and during moderate exercise. Canad. J. Physiol.47, 603–610 (1963).Google Scholar
  8. Doar, J. N. H., Gramp, D. G.: The effects of obesity and maturity-onset diabetes mellitus onl(−) Lactic acid metabolism. Clin. Sci.39, 271–279 (1970).Google Scholar
  9. Drury, D. R., Wick, A. N.: Metabolism of lactic acid in the intact rabbit. Amer. J. Physiol.184, 304–308 (1956).Google Scholar
  10. ——: Chemistry and metabolism ofl(+) andd(−) lactic acids. Ann. N. Y. Acad. Sci.119, 1061–1069 (1965).Google Scholar
  11. Forbath, N., Kenshole, A. B., Hetenyi, G., Jr.: Turnover of lactic acid in normal and diabetic dogs calculated by two tracer methods. Amer. J. Physiol.213, 1179–1184 (1967).Google Scholar
  12. Freminet, A., Bursaux, E., Poyart, C.: An improved micromethod for the determination of L. Lactate14C in blood. Biochem. Med.6, 72–76 (1972).Google Scholar
  13. Garcia, A. C., Lai, Y. L., Attebery, B. A., Brown, E. B., Jr.: Lactate and pyruvate accumulation during hypocapnia. Resp. Physiol.12, 371–380 (1971).Google Scholar
  14. Hill, A. V., Long, C. N. H., Lupton, H.: Muscular exercise, lactic acid and the supply and utilization of oxygen. Proc. roy. Soc. B96 438 (1924).Google Scholar
  15. Huckabee, N. E.: Relationship of pyruvate and lactate during anaerobic metabolism. I. Effect of infusions of pyruvate or glucose and of hyperventilation. J. clin. Invest.37, 244–254 (1958).Google Scholar
  16. Kazemi, H., Valencia, L. M., Shannon, D. C.: Brain and cerebrospinal fluid lactate concentration in respiratory acidosis and alkalosis. Resp. Physiol.6, 178–186 (1969).Google Scholar
  17. Kleiber, M.: Body size and metabolic rate. Physiol. Rev.27, 511–541 (1947).Google Scholar
  18. Kreisberg, R. A., Pennington, L. F., Bashell, C. R.: Lactate turnover and glucogenesis in normal and obese humans. Effect of starvation. Diabetes19, 53–63 (1970).Google Scholar
  19. Lie, S. E., Loken, A. C., Stromme, J. H.: Fatal congenital lactic acidosis in two siblings. Acta ped. scand.60, 129–137, 138–145 (1971).Google Scholar
  20. Meeh, K.: Oberflächenmessungen des menschlichen Körpers. Z. Biol. 425–458 (1879).Google Scholar
  21. Scholander, P. F.: Analysis for accurate estimation of respiratory gases in one half cubic centimeter samples. J. biol. Chem.167, 235–250 (1947).Google Scholar
  22. Schwartz, D.: Methodes statistiques à l'usage des médecins et des biologistes. Méd. Flammarion 1963.Google Scholar
  23. Steele, R.: Reflections on pools. Fed. Proc.23, 671–679 (1964).Google Scholar
  24. Steele, R.: Tracer probes in steady state systems, vol. 1. Springfield, Ill.: Ch. C. Thomas.Google Scholar
  25. —, Wall, S. S., de Bodo, R. C., Altszuler, N.: Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Amer. J. Physiol.187, 15–24 (1956).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • A. Freminet
    • 1
  • E. Bursaux
    • 1
  • C. F. Poyart
    • 1
  1. 1.Institut d'AnesthésiologieParis 6 e(France)

Personalised recommendations