Skip to main content
Log in

The ionic requirements for the production of action potentials in helix pomatia neurones

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

  1. 1.

    The effect of polarizing currents, ions and drugs on the action potentials of individual neurones in the sub-oesophageal ganglion of the snail Helix pomatia has been examined.

  2. 2.

    The current-voltage relation showed a marked decrease of resistance for the outward current (delayed rectification). AtI=0, the average membrane resistance was 8.3 kΩ×cm2.

  3. 3.

    Tetrodotoxin in a concentration of 4.6×10−6 g/ml did not affect the overshoot or the maximum rate of rise. 0.4% cocaine inhibited delayed rectification, but did not abolish the action potential.

  4. 4.

    Ringer solution with twice the normal Na concentration augmented the overshoot by 5–6 mV and increased the maximum rate of rise to 130% of its normal value. Na-free Ringer decreased the overshoot by only 5–8 mV and reduced the maximum rate of rise to about half its normal value.

  5. 5.

    Even after prolonged perfusion with Na-free solution action potentials were still obtained. The overshoot stayed constant during a 2 hours perfusion period whereas the maximum rate of rise declined slowly. Na-free Ringer with Mn depressed the spike.

  6. 6.

    Raising the Ca concentration of the Na-free Ringer increased the overshoot (average 15.9 mV for a 10-fold increase of [Ca]0), shifted the threshold potential towards zero and slightly augmented the maximum rate of rise.

  7. 7.

    Nominally Ca-free solution markedly reduced the action potential. Excitability was maintained in Na- and Ca-free Ringer with 10 mM Sr or Ba.

  8. 8.

    Part of the results could be explained by assuming a reservoir of Na+ ions in or close to the cell membrane. An alternative explanation is that Ca++ ions participate in carrying charge across the membrane during the rising phase of the action potential. The second hypothesis appears more likely although a definite decision could not be reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbot, B. C., andI. Parnas: Electrical and mechanical responses in deep abdominal extensor muscles of crayfish and lobster. J. gen. Physiol.48, 919–931 (1965).

    Google Scholar 

  • Araki, T., andT. Otani: Response of single motoneurons to direct stimulation in toad's spinal cord. J. Neurophysiol.18, 472–485 (1955).

    Google Scholar 

  • Arvanitaki, A., G. Romey etH. Takeuchi: Variations de la relation caractéristique V(i) de la neuromembrane en fonction de lapO2. Implications fonctionelles. C. R. Soc. Biol. (Paris)161, 1629–1633 (1967).

    Google Scholar 

  • Bullock, T. H., andG. A. Horridge: Structure and function in the nervous systems of invertebrates, Vol. I and II. San Francisco-London: W. H. Freeman & Co. 1965.

    Google Scholar 

  • Chamberlain, S. G., andG. A. Kerkut: Voltage clamp studies on snail (Helix aspersa) neurones. Nature (Lond.)216, 89 (1967).

    Google Scholar 

  • Chandler, W. K., A. L. Hodgkin, andH. Meves: The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J. Physiol. (Lond.)180, 821–836 (1965).

    Google Scholar 

  • David, G. B.: Cytoplasmic networks in neurons. In: Comparative Neurochemistry, ed. byD. Richter. London: Pergamon Press 1964.

    Google Scholar 

  • Fatt, P., andB. L. Ginsborg: The ionic requirements for the production of action potentials in crustacean muscle fibres. J. Physiol. (Lond.)142, 516–543 (1958).

    Google Scholar 

  • —, andB. Katz: The electrical properties of crustacean muscle fibres. J. Physiol. (Lond.)120, 171–204 (1953).

    Google Scholar 

  • Frankenhaeuser, B., andA. L. Hodgkin: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.)137, 217–244 (1957).

    Google Scholar 

  • Gerasimov, V. D.: Effect of ion composition of medium on excitation process in giant neurons of snail. Fiziol. Sh. SSSR50, 457–463 (1964).—Fed. Proc.24, T 371–374 (1965).

    Google Scholar 

  • —,L. Janiszewski, andE. Skubaljanka: Rectifier properties of the membrane of giant neurones in solutions of varying ion composition. Biofizika12, 97–103 (1967) (in Russian).

    Google Scholar 

  • —,P. G. Kostyuk, andV. A. Maiskii: Excitability of giant nerve cells of various pulmonate mollusks in sodium-free solutions. Byull. éksp. Biol. Med.58, 3–6 (1964).—Fed. Proc.24, T 676–678 (1965).

    Google Scholar 

  • ———: Influence of divalent cations on electrical characteristics of giant neurone membrane. Biofizika10, 447–453 (1965) (in Russian).

    Google Scholar 

  • Gerschenfeld, H. M., andA. Lasansky: Action of glutamic acid and other naturally occurring amino-acids on snail central neurons. Int. J. Neuropharmacol.3, 301–314 (1964).

    Google Scholar 

  • Gola, M.: Effets de lapO2 sur la résistance électrique de la neuromembrane d'Helix pomatia. C. R. Soc. Biol. (Paris)161, 1634–1638 (1967).

    Google Scholar 

  • Goldman, D. E.: Potential, impedance, and rectification in membranes. J. gen. Physiol.27, 37–60 (1943).

    Google Scholar 

  • Hagiwara, S., andK.-I. Naka: The initiation of spike potential in barnacle muscle fibers under low intracellular Ca++. J. gen. Physiol.48, 141–162 (1964).

    Google Scholar 

  • —, andS. Nakajima: Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J. gen. Physiol.49, 793–806 (1966).

    Google Scholar 

  • —, andK. Takahashi: Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J. gen. Physiol.50, 583–601 (1967).

    Google Scholar 

  • Hille, B.: Charges and potentials at the nerve surface. Divalent ions and pH. J. gen. Physiol.51, 221–236 (1968).

    Google Scholar 

  • Hodgkin, A. L., andB. Katz: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.)108, 37–77 (1949).

    Google Scholar 

  • Junge, D.: Multi-ionic action potentials in molluscan giant neurones. Nature (Lond.)215, 546–548 (1967).

    Google Scholar 

  • Kandel, E. R., andL. Tauc: Anomalous rectification in the metacerebral giant cells and its consequences for synaptic transmission. J. Physiol. (Lond.)183, 287–304 (1966).

    Google Scholar 

  • Kao, C. Y.: Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol. Rev.18, 997–1049 (1966).

    Google Scholar 

  • Kerkut, G. A., andD. R. Gardner: The role of calcium ions in the action potentials of Helix aspersa neurones. Comp. Biochem. Physiol.20, 147–162 (1967).

    Google Scholar 

  • —, andR. W., Meech: The effect of ions on the membrane potential of snail neurones. Comp. Biochem. Physiol.20, 411–429 (1967).

    Google Scholar 

  • —, andR. C. Thomas: The effect of anion injection and changes in the external potassium and chloride concentration on the reversal potentials of the IPSP and acetylcholine. Comp. Biochem. Physiol.11, 199–213 (1964).

    Google Scholar 

  • ——: An electrogenic sodium pump in snail nerve cells. Comp. Biochem. Physiol.14, 167–183 (1965).

    Google Scholar 

  • —, andR. J. Walker: The specific chemical sensitivity of Helix nerve cells. Comp. Biochem. Physiol.7, 277–288 (1962).

    Google Scholar 

  • Koketsu, K., andS. Nishi: Calcium spikes of nerve cell membrane: Role of calcium in the production of action potentials. Nature (Lond.)217, 468–469 (1968).

    Google Scholar 

  • Maiskii, V. A.: Electrical characteristics of surface membrane of the giant nerve cells of Helix pomatia. Fiziol. Sh. SSSR49, 1468 (1963).—Fed. Proc.23, T 1173–1176 (1964).

    Google Scholar 

  • Meves, H.: Das Aktionspotential der Riesennervenzellen der Weinbergschnecke Helix pomatia. Pflügers Arch. ges. Physiol.289, R 10 (1966).

    Google Scholar 

  • —: Calciumströme durch erregbare membranen. Elektrophysiologische Untersuchungen an den Riesennervenzellen der Weinbergschnecke Helix pomatia. Ber. Bunsenges. physik. Chem.71, 831–834 (1967).

    Google Scholar 

  • Moreton, R. B.: An application of the constant-field theory to the behaviour of giant neurones of the snail, Helix aspersa. J. exp. Biol.48, 611–623 (1968a).

    Google Scholar 

  • — Ionic mechanism of the action potentials of giant neurones of Helix aspersa. Nature (Lond.)219, 70–71 (1968b).

    Google Scholar 

  • Nakamura, Y., S. Nakajima, andH. Grundfest: The action of tetrodotoxin on electrogenic components of squid giant axons. J. gen. Physiol.48, 985–996 (1965).

    Google Scholar 

  • Niedergerke, R., andR. K. Orkand: The dual effect of calcium on the action potential of the frog's heart. J. Physiol. (Lond.)184, 291–311 (1966).

    Google Scholar 

  • Oomura, Y., S. Ozaki, andT. Maéno: Electrical activity of a giant nerve cell under abnormal conditions. Nature (Lond.)191, 1265–1267 (1961).

    Google Scholar 

  • Ozeki, M., A. R. Freeman, andH. Grundfest: The membrane components of crustacean neuromuscular systems. I. Immunity of different electrogenic components to tetrodotoxin and saxitoxin. J. gen. Physiol.49, 1319–1334 (1966).

    Google Scholar 

  • Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol.1, 491–527 (1959).

    Google Scholar 

  • —: Membrane potential transients and membrane time constant of motoneurons. Exp. Neurol.2, 503–532 (1960).

    Google Scholar 

  • Reuter, H.: The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J. Physiol. (Lond.)192, 479–492 (1967).

    Google Scholar 

  • Takeda, K.: Permeability changes associated with the action potential in procainetreated crayfish abdominal muscle fibers. J. gen. Physiol.50, 1049–1074 (1967).

    Google Scholar 

  • Tauc, L.: Les divers modes d'activité du soma neuronique ganglionnaire de l'aplysie et de l'escargot. In: Microphysiologie comparée des éléments excitables. Centre National de la Recherche Scientifique. Paris 1957.

    Google Scholar 

  • —, andH. M. Gerschenfeld: Effet inhibiteur ou excitateur du chlorure d'acétylcholine sur le neurone d'Escargot. J. Physiol. (Paris).52, 236 (1960).

    Google Scholar 

  • —, andG. M. Hughes: Modes of initiation and propagation of spikes in the branching axons of molluscan central neurons. J. gen. Physiol.46, 533–549 (1962).

    Google Scholar 

  • Thomas, R. C.: Measurement of current produced by the sodium pump in a snail neurone. J. Physiol. (Lond.)195, 23–24 P (1968).

    Google Scholar 

  • Walker, R. J., andA. Hedges: The effect of cholinergic agonists on the spontaneous activity of neurones of Helix aspersa. Comp. Biochem. Physiol.24, 355 to 376 (1968).

    Google Scholar 

  • Weed, R. I., andA. Rothstein: The uptake of divalent manganese ion by mature normal human red blood cells. J. gen. Physiol.44, 301–314 (1960).

    Google Scholar 

  • Werman, R., andH. Grundfest: Graded and all-or-none electrogenesis in arthropod muscle. II. The effects of alkali-earth and onium ions on lobster muscle fibers. J. gen. Physiol.44, 997–1027 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meves, H. The ionic requirements for the production of action potentials in helix pomatia neurones. Pflugers Arch. 304, 215–241 (1968). https://doi.org/10.1007/BF00592126

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00592126

Key-Words

Schlüsselwörter

Navigation