Skip to main content
Log in

Different reactivity of Z-DNA antibodies with human chromosomes modified by actinomycin D and 5-bromodeoxyuridine

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Antibodies against Z-DNA react with fixed metaphase chromosomes of man and other mammals. Indirect immunofluorescence staining shows that chromosomal segments corresponding to R- and T-bands preferentially fix Z-DNA antibodies. In this work Z-DNA antibodies were used as a probe for DNA conformation in euchromatin of fixed human chromosomes whose condensation or staining were modified by actinomycin D (AMD) and by 5-bromodeoxyuridine (BrdU). Treatments with AMD and BrdU were performed to induce a G-banding by modification of chromosomal segments corresponding to R- and T-bands. Long BrdU treatments were used to induce asymmetrical and partially undercondensed chromosomes by substitution of thymidine in one or both DNA strand. Our results show a clear difference of Z-DNA antibodies reactivity after AMD or BrdU treatment. The G-banding obtained after AMD treatment is not reversed by Z-DNA antibodies staining since these antibodies bind very weakly to the undercondensed R-bands. On the other hand, the G-banding obtained by BrdU is completely reversed giving typical R-banding, as on untreated chromosomes. For asymmetrical chromosomes an R-, T-banding pattern is always observed but there is a decrease of the fluorescence intensity proportional to the degree of BrdU incorporation. We conclude that AMD treatment greatly disturbs Z-DNA antibodies binding suggesting a change in DNA conformation, whereas BrdU treatments do not suppress but only weaken the specific binding of Z-DNA antibodies on R- and T-bands. The direct involvement of thymidine substitution in DNA sequences recognized by Z-DNA antibodies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt-Jovin DJ, Robert-Nicoud M, Zarling D, Greider C, Weimer E, Jovin MT (1983) Left-handed Z-DNA in bands of acid-fixed polytene chromosomes. Proc Natl Acad Sci USA 80:4344–4348

    Google Scholar 

  • Benyajati C, Worcel A (1976) Isolation, characterization and structure of the folded interphase genome ofDrosophila melanogaster. Cell 9:393–407

    Google Scholar 

  • Buys CH, Osinga J (1980) The mechanism of differential sister chromatid fluorescence as studied with the G-C specific DNA ligant mithramycin. Exp Cell Res 125:105–109

    Google Scholar 

  • Couturier J, Morichon-Delvallez N, Dutrillaux B (1985) Deletion of band 13q21 is compatible with normal phenotype. Hum Genet 70: 87–91

    Google Scholar 

  • Dutrillaux B, Viegas-Péquinot E (1981) High resolution R- and G-banding on the same preparation. Hum Genet 57:93–95

    Google Scholar 

  • Dutrillaux B, Fosse AM, Prieur M, Lejeune J (1974) Analyse des échanges de chromatides dans les cellules somatiques humaines. Traitement au BrdU (5-bromodéoxyuridine) et fluorescence bicolore par l'acridine orange. Chromosoma 48:327–340

    Google Scholar 

  • Dutrillaux B, Aurias A, Fosse AM (1976a) Différentiation des mécanismes induisants la segmentation et l'asymétrie des chromatides, après traintements par le 5-bromodéoxyuridine. Exp Cell Res 97:313–321

    Google Scholar 

  • Dutrillaux B, Couturier J, Richer CL, Viegas-Péquignot E (1976b) Sequence of DNA replication in 277 R- and Q-bands of human chromosomes using a BrdU treatment. Chromosoma 58:51–61

    Google Scholar 

  • Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A (1984) Replication timing of genes and middle repetitive sequences. Science 224:686–691

    Google Scholar 

  • Grezeschik KH, Kim MA, Johannsmann R (1975) Late replication bands of human chromosomes demonstrated by fluorochrome and Giemsa staining. Humangenetik 29:41–59

    Google Scholar 

  • Hamada H, Kakamaga T (1982) Potential Z-DNA forming sequences are highly dispersed in human genome. Nature 298:391–398

    Google Scholar 

  • Hamada H, Petrino MG, Kakamaga T, Seidman M, Stollar BD (1984) Characterization of genomic poly (dT-dG) poly (dC-dA) sequences: structure, organization and conformation. Mol Cell Biol 4:2610–1621

    Google Scholar 

  • Haniford DB, Pulleybland D (1983) Facile transition of poly (d(TG) d(CA)) into a left-handed helix in physiological conditions. Nature 320:632–634

    Google Scholar 

  • Hill RJ, Stollar BD (1983) Dependence of Z-DNA antibody binding to polytene chromosomes on acid fixation and DNA torsional strain. Nature 305:338–340

    Google Scholar 

  • Hill RJ, Watt F, Stollar D (1984) Z-DNA immunoreactivity ofDrosophila polytene chromosomes. Effects of the fixatives 45% acetic acid and 95% ethanol and of DNase 1 nickling. Exp Cell Res 153: 469–482

    Google Scholar 

  • Hsu TC, Pathak S, Shafer DA (1973) Induction of chromosome crossbanding by trealing cells with chemical agents before fixation. Exp Cell Res 79:484–487

    Google Scholar 

  • Human Gene Mapping 7, 1983 (1984) Cytogenet Cell Genet 37:1–666

    Google Scholar 

  • Igo-Kemenes T, Zachan JJ (1978) Domains in chromatin structure. Cold Spring Harbor Symp Quant Biol 42:109–118

    Google Scholar 

  • Javamerian K, Liu LF, Wang JC (1978) Non-histone proteins HMG1 and HMG2 change the DNA helical structure. Science 199:1345–1346

    Google Scholar 

  • Klysik J, Stirdivant SM, Larson JE, Hart PA, Wells RD (1981) Lefthanded DNA in restriction fragments and a recombinant plasmid. Nature 290:672–677

    Google Scholar 

  • Lang MC, Malfoy B, Freund AM, Daune M, Leng M (1982) Visualization of 2 sequences in form V of pBR 322 by immunoelectron microscopy. EMBO J 1:1149–1153

    Google Scholar 

  • Latt SA (1973) Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci USA 70:3395–3399

    Google Scholar 

  • Lemeunier F, Derbin C, Malfoy B, Leng M, Taillandier E (1982) Identification of left-handed Z-DNA by indirect immunofluorescence in polytene chromosomes ofChironomus thummi thummi. Exp Cell Res 141:508–513

    Google Scholar 

  • Leng M (1985) Left handed Z-DNA. Biochim Biophys Acta 825:339–344

    Google Scholar 

  • Lipps HJ, Nordheim A, Lafer EM, Ammermann D, Stollar BD, Rich A (1983) Antibodies against Z-DNA react with the macronucleus but not the micronucleus of the hypotrichous ciliateStylonychia mytilus. Cell 32:435–441

    Google Scholar 

  • Malfoy B, Rousseau N, Leng M (1982) Interaction between antibodies to Z form deoxyribonucleic acid and double-stranded polynucleotide. Biochemistry 21:5463–5467

    Google Scholar 

  • Malfoy M, Rousseau N, Viegas-Péquignot E, Dutrillaux B, Leng M, (1986) Nucleotide sequence of an heterochromatic segment recognized by the antibodies to Z-DNA in fixed metaphase chromosomes. Nucleic Acids Res 14:3197–3214

    Google Scholar 

  • Morgenegg G, Celio MR, Malfoy B, Leng M, Kuenzle CC (1983) Z-DNA immunoreactivity in rat tissues. Nature 303:540–543

    Google Scholar 

  • Nordheim A, Rich A (1983) Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303:674–679

    Google Scholar 

  • Nordheim AM, Pardue ML, Lafer EM, Möller A, Rich A (1981) Antibodies to left handed Z-DNA bind to interband regions ofDrosophila polytene chromosomes. Nature 294:417–422

    Google Scholar 

  • Nordheim A, Lafer EM, Peck LJ, Wang JC, Stollar BD, Rich A (1982) Negatively supercoiled plasmids contein left-handed Z-DNA segments as detected by specific antibody binding. Cell 31: 309–318

    Google Scholar 

  • Nordheim A, Peck LJ, Lafer EM, Stollar BD, Wang JC, Rich A (1983) Supercoiling and left handed Z-DNA. Cold Spring Harbor Symp Quant Biol 47:93–100

    Google Scholar 

  • Oudet P, Gross-Bellard M, Chambon P (1975) Folding of the DNA double helix in chromatin. Cell 4:281–300

    Google Scholar 

  • Patel DJ, Kozlowski SA, Rice JA, Broka C, Itakura K (1981) Mutual interaction between adjacent dG.dC actinomycin binding sites and dA.dT metropsin binding sites on the self-complementary (d C-G-C-G-A-A-T-T-C-G-C-G) duplex in solution. Proc Natl Acad Sci USA 78:7281–7284

    Google Scholar 

  • Peck LJ, Nordheim A, Rich A, Wang JC (1982) Flipping of cloned d(pCpG) d(pCpG)n DNA sequences from right to left-handed helical structure by salt, Co(III) or negative supercoiling. Proc Natl Acad Sci USA 79:4560–4564

    Google Scholar 

  • Perry P, Wolff S (1974) New Giemsa method for the differential staining of sister chromatids. Nature 251:156–158

    Google Scholar 

  • Rich A, Nordheim A, Wang AHJ (1984) The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem 53:791–846

    Google Scholar 

  • Robert-Nicoud M, Arndt-Jovin DJ, Zarling DA, Jovin TM (1984) Immunological detection of left handed Z-DNA in isolated polytene chromosomes. Effects of ionic strength, pH, temperature and topological stress. EMBO J 3:721–731

    Google Scholar 

  • Shafer DA (1973) Banding human chromosomes in culture with actinomycin. Lancet I:828

    Google Scholar 

  • Singleton CK, Klysik J, Stirdivant SM, Wells RP (1982) Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature 299:312–316

    Google Scholar 

  • Staiano-Coico L, Stollar BD, Darzynkiewicz Z, Dutkowski R, Weksler ME (1985) Binding of anti-Z-DNA antibodies in quiescent and activated lymphocytes: relationship to cell cycle progression and chromatin changes. Mol Cell Biol 5:3270–3273

    Google Scholar 

  • Van de Sande JH, Jovin TM (1982) Z-DNA, the left-handed helical form of poly (d(G-C)) in Mg Cl2-ethanol, is biologically active. EMBO J 1:115–120

    Google Scholar 

  • Viegas-Péquignot E, Dutrillaux B (1976) Modification spécifique des bandes R et Q par le 5-bromodéoxyuridine et l'actinomycine D. Exp Cell Res 98:338–348

    Google Scholar 

  • Viegas-Péquignot E, Derbin C, Lemeunier F, Taillandier E (1982) Identification of left handed Z-DNA by indirect immunomethods in metaphasic chromosomes of a mammal,Gerbillus nigeriae (Gerbillidae, Rodentia). Ann Génét (Paris) 25:218–222

    Google Scholar 

  • Viegas-Péquignot E, Derbin C, Malfoy B, Taillandier E, Dutrillaux B, (1983) Z-DNA immunoreactivity in fixed metaphase chromosomes of primates. Proc. Natl Acad Sci USA 80:5890–5894

    Google Scholar 

  • Viegas-Péquignot E, Malfoy B, Leng M, Dutrillaux B, Tchen P (1986) In situ hybridization of an acetylaminofluorene-modified probe recognized by Z-DNA antibodies in vitro. Cytogenet Cell Genet 42:105–109

    Google Scholar 

  • Weisbrod S (1982) Active chromatin. Nature 297:289–295

    Google Scholar 

  • Zakharov AF, Egolina NA (1972) Differential spiralisation along mammalian mitotic chromosomes. Chromosoma 38:341–365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viegas-Pequignot, E., Malfoy, B., Sabatier, L. et al. Different reactivity of Z-DNA antibodies with human chromosomes modified by actinomycin D and 5-bromodeoxyuridine. Hum Genet 75, 114–119 (1987). https://doi.org/10.1007/BF00591070

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00591070

Keywords

Navigation