Effects of epinephrine on electrical properties of Madin-Darby canine kidney cells

  • M. Paulmichl
  • M. Defregger
  • F. Lang
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands


The present study has been performed, to test for the influence of epinephrine on the potential difference across the cell membrane (PD) of Madin-Darby canine kidney (MDCK) cells. Under control conditions, mimicking the in vivo situation, PD averages −53.3±0.9 mV (n=37). Increasing extracellular potassium concentration from 5.4 to 10 and 20 mmol/l depolarizes the cell membrane by +4.3±0.4 mV (n=5) and +15.8±1.2 mV (n=5), respectively. The application of 1 μmol/l epinephrine leads to sustained hyperpolarization of the cell membrane to −71.5±0.7 mV (n=37). In the presence of epinephrine, increasing extracellular potassium concentration from 5.4 to 20 mmol/l depolarizes the cell membrane by +30.6 ±0.2 mV (n=5); 1 mmol/l barium depolarizes the cell membrane by +14.8±0.7 mV (n=20) and abolishes the effect of step increases of extracellular potassium concentration from 5.4 to 10 mmol/l. In the presence of barium, epinephrine leads to a transient hyperpolarization by −31.2 ±1.2 mV (n=18). During this transient hyperpolarization, the cell membrane is sensitive to extracellular potassium concentration despite the continued presence of barium; 10 μmol/l verapamil depolarizes the cell membrane to −41.0±2.6 mV (n=11). In the presence of verapamil, the hyperpolarizing effect of epinephrine is only transient; 10 μmol/l phentolamine depolarizes the cell membrane by +3.0±0.6 mV (n=8). In the presence of phentolamine, the effect of epinephrine is virtually abolished (+0.4±0.6 mV,n=8); 1 μmol/l isoproterenol depolarizes the cell membrane by +2.8±0.8 mV (n=8). In the norminal absence of extracellular calcium, epinephrine leads to a transient hyperpolarization, which can only be elicited once. In conclusion, cpinephrine hyperpolarizes MDCK cells by increasing the apparent potassium conductance. This effect is transmitted by α-receptors and may be mediated by increases of intracellular calcium activity.

Key words

MDCK-cells Intracellular microelectrodes Cell membrane potential Potassium-conductance Barium Verapamil Phentolamine Isoproterenol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beyenbach KW, Frömter E (1985) Electrophysiological evidence for Cl secretion in shark renal proximal tubules. Am J Physiol 248:F282-F295PubMedGoogle Scholar
  2. 2.
    Brown CDA, Simmons NL (1981) Catecholamine-stimulation of Cl-secretion in MDCK cell epithelium. Biochim Biophys Acta 649:427–435PubMedCrossRefGoogle Scholar
  3. 3.
    Brown CDA, Simmons NL (1982) K+ transport in “tight” epithelial monolayers of MDCK cells: evidence for a calciumactivated K+ channel. Biochim Biophys Acta 690:95–105PubMedCrossRefGoogle Scholar
  4. 4.
    Cereijido M (1984) Electrical properties of Madin-Darby canine kidney cells. Fed Proc 43:2230–2235PubMedGoogle Scholar
  5. 5.
    Cereijido M, Robbins E, Sabatini DD, Stefani E (1984) Cellto-cell communication in monolayers, of epithelioid cells (MDCK) as a function of the age of the monolayer. J Membr Biol 81:41–48PubMedCrossRefGoogle Scholar
  6. 6.
    Fleckenstein A (1983) History of calcium antagonists. Circ Res 52(Suppl 1):3–16Google Scholar
  7. 7.
    Frizzell, RA, Field M, Schultz SG (1979) Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 236(1):F1-F8PubMedGoogle Scholar
  8. 8.
    Greger R, Schlatter E, Wang F, Forrest Jr JN (1984) Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). III. Effects of stimulation of secretion by cyclic AMP. Pflügers Arch 402:376–384PubMedCrossRefGoogle Scholar
  9. 9.
    Gstraunthaler G, Pfaller W, Kotanko P (1985) Biochemical characterization of renal epithelial cell cultures (LLC-PK1 and MDCK). Am J Physiol 248:F536-F544PubMedGoogle Scholar
  10. 10.
    Handler JS, Perkins FM, Johnson JP (1980) Studies of renal cell function using cell culture techniques. Am J Physiol 238:F1-F9PubMedGoogle Scholar
  11. 11.
    Iwatsuki N, Petersen OH (1985) Inhibition of Ca2+-activated K+ channels in pig pancreatic acinar cells by Ba2+, Ca2+, quinine and quinidine. Biochim Biophys Acta 819:249–257PubMedCrossRefGoogle Scholar
  12. 12.
    Kolb HA, Brown CDA, Murer, H (1985) Identification of a voltage-dependent anion channel in the apical membrane of a Cl-secretory epithelium (MDCK). Pflügers Arch 403:262–265PubMedCrossRefGoogle Scholar
  13. 13.
    Latorre R, Coronado R, Vergara C (1984) K+ channels gated by voltage and ions. Annu Rev Physiol 46:485–495PubMedCrossRefGoogle Scholar
  14. 14.
    MacLaughlin M, Mello Aires de M, Malnic G (1985) Verapamil effect on renal function of normotensive and hypertensive rats. Renal Physiol 8:112–119PubMedGoogle Scholar
  15. 15.
    Madin SH, Darby NB (1958) As catalogued in: American Type Culture Collection Catalogue of strains. 2:574–576Google Scholar
  16. 16.
    Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng 7:1–18PubMedCrossRefGoogle Scholar
  17. 17.
    Meier KE, Snavely MD, Brown SL, Brown JH, Insel PA (1983) α1-and β2-adrenergic receptor expression in the Mardin-Darby canine kidney epithelial cell line. J Cell Biol 97:405–415PubMedCrossRefGoogle Scholar
  18. 18.
    Meier KE, Sternfeld DR, Insel PA (1984) Alpha1- and beta2-adrenergic receptors co-expressed on cloned MDCK cells are distinct glycoproteins. Biochem Biophys Res Commun 118(1): 73–81PubMedCrossRefGoogle Scholar
  19. 19.
    Paulmichl M, Gstraunthaler G, Lang F (1985) Electrical properties of Mardin-Darby canine kidney cells. Pflügers Arch 405:102–107PubMedCrossRefGoogle Scholar
  20. 20.
    Petersen KU, Reuss L (1983) Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J Gen Physiol 81:705–729PubMedCrossRefGoogle Scholar
  21. 21.
    Petersen OH, Maruyama Y (1984) Calcium-activated potassium channels and their role in secretion. Nature 307: 693–696PubMedCrossRefGoogle Scholar
  22. 22.
    Putney Jr JW (1979) Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol Rev 30(2):209–245Google Scholar
  23. 23.
    Richardson JCW, Scalera V, Simmons NL (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta 673:26–36PubMedCrossRefGoogle Scholar
  24. 24.
    Rindler MJ, Chuman LM, Shaffer L, Saier Jr MH (1979) Retention of differentiated properties in an established dog kidney: epithelial cell line (MDCK). J Cell Biol 81:635–648PubMedCrossRefGoogle Scholar
  25. 25.
    Rugg EL, Simmons NL (1984) Control of cultured epithelial (MDCK) cell transport function: identification of a β-adrenoceptor coupled to adenylate cyclase. Onart J Exp Physiol 69:339–353Google Scholar
  26. 26.
    Schultz StG (1980) Basic principles of membrane transport. Cambridge Univ Press, LondonGoogle Scholar
  27. 27.
    Schwarz W, Passow H (1983) Ca2+-activated K+ channels in erythrocytes and excitable cells. Annu Rev Physiol 45:359–374PubMedCrossRefGoogle Scholar
  28. 28.
    Simmons NL (1982) Cultured monolayers of MDCK cells: A novel model system for the study of epithelial development and function. Gen Pharmacol 13:287–291PubMedCrossRefGoogle Scholar
  29. 29.
    Simmons NL, Brown CDA, Rugg EL (1984) The action of epinephrine on Madin-Darby canine kidney cells. Fed Proc 43:2225–2229PubMedGoogle Scholar
  30. 30.
    Stefani E, Cereijido M (1983) Electrical properties of cultured epithelioid cells (MDCK). J Membr Biol 73:177–184PubMedCrossRefGoogle Scholar
  31. 31.
    Taub M, Chuman L, Saier Jr MH, Sato G (1979) Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc Natl Acad Sci USA 76:3338–3342PubMedCrossRefGoogle Scholar
  32. 32.
    Valdeolmillos, M, Garcia-Sancho, J, Herreros B (1982) Ca2+-dependent K+ transport in the Ehrlich Ascites tumor cell. Biochim Biophys Acta 685:273–278PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. Paulmichl
    • 1
  • M. Defregger
    • 1
  • F. Lang
    • 1
  1. 1.Institute of Physiology University of InnsbruckInnsbruckAustria

Personalised recommendations