Skip to main content
Log in

Control of derepressed β-galactosidase synthesis inEscherichia coli

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

  1. 1.

    The synthesis of β-galactosidase in a constitutive mutant ofEscherichia coli (ML 308, i-z+y+a+) responds to the nutritional environment. Repression can be reversed by cyclic AMP.

  2. 2.

    The greatest degree (%) of repression by metabolisable compounds is obtained when cells utilising glycerol (0%) are given, in addition, pyruvate (67%), serine (57%) which can be converted to pyruvate, or substrates of phosphotransferase systems (20–40%) which liberate pyruvate in their operation. Furthermore, pyruvate represses β-galactosidase synthesis in a phosphoenolpyruvate synthaseless mutant. Pyruvate, however, does not repress in a pyruvate dehydrogenaseless mutant and it follows that pyruvate itself is not the agent of repression.

  3. 3.

    Raffinose, a non-metabolisable galactoside, represses synthesis of β-galactosidase during growth on glycerol. Over a wide range, repression depends on raffinose concentration as does a lowered pool of ATP, rate of oxygen consumption and growth rate. All these parameters are inter-related but, in particular, β-galactosidase synthesis depends on the size of the ATP-pool presumably because this also limits synthesis of cyclic AMP under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboud, M., Burger, M.: Adenosine triphosphate and catabolite repression of β-galactosidase inEscherichia coli. Biochem. biophys. Res. Commun.45, 190–197 (1971)

    Google Scholar 

  • Anderson, R. L., Wood, W. A.: Carbohydrate metabolism in micro-organisms. Ann. Rev. Microbiol.23, 539–578 (1969)

    Google Scholar 

  • Cohn, M., Horibata, K.: Physiology of the inhibition by glucose of the induced synthesis of β-galactosidase enzyme system ofEscherichia coli. J. Bact.78, 624–635 (1959)

    Google Scholar 

  • Cooper, R. A., Kornberg, H. L.: Phosphoenolpyruvate synthase. In: Methods in enzymology, Vol. XIII, pp. 309–314, J. M. Lowenstein, Ed. New York-London: Academic Press 1969

    Google Scholar 

  • Cowan, S. T., Steel, K. J.: Manual for the identification of Medical Bacteria, p. 78. London: Cambridge University Press 1965

    Google Scholar 

  • Gorini, L., Kaufman, H.: Selecting bacterial mutants by the penicillin method. Science131, 604–605 (1960)

    Google Scholar 

  • Gounaris, A. D., Hager, L. L.: A resolution of theEscherichia coli: pyruvate dehydrogenase complex. J. biol. Chem.236, 1013–1018 (1961)

    Google Scholar 

  • Hamilton, I. D., Holms, W. H.: Measurement of respiration of micro-organisms during batch culture. Lab. Pract.19, 795–798 (1970)

    Google Scholar 

  • Harvey, N. L., Fewson, C. A., Holms W. H.: Apparatus for batch culture of micro-organisms. Lab. Pract.17, 1134–1136 (1968)

    Google Scholar 

  • Holms, W. H.: Control of constitutive β-galactosidase synthesis inEscherichia coli. J. gen. Microbiol.45, 11 (1966)

    Google Scholar 

  • Holms, W. H.: Growth control in the bacterial cell. Fleck Lecture, No. 9, p. 19–24, Univ. of Glasgow 1969

  • Holms, W. H., Bennett, P. M.: Regulation ofisocitrate dehydrogenase activity inEscherichia coli on adaptation to acetate. J. gen. Microbiol.65, 57–68 (1971)

    Google Scholar 

  • Holms, W. H., Hamilton, I. D., Robertson, A. G.: The rate of turnover of the adenosine triphosphate pool ofEscherichia coli growing aerobically in simple defined media. Arch. Mikrobiol.83, 95–109 (1972)

    Google Scholar 

  • Ide, M.: Adenylcyclase ofEscherichia coli. Biochem. biophys. Res. Commun.36, 42–46 (1969)

    Google Scholar 

  • Ide, M., Yoshimoto, A., Okabayashi, T.: Formation of adenosine cyclic 3′5′ phosphate by non proliferating cells and cell free extract ofBrevibacterium liquefaciens. J. Bact.94, 317–322 (1967)

    Google Scholar 

  • Kundig, W., Ghosh, S., Roseman, S.: Phosphate bound to histidine in a protein as a intermediate in a novel phosphotransferase system. Proc. nat. Acad. Sci. (Wash.)52, 1067–1074 (1964)

    Google Scholar 

  • Magasanik, B.: Catabolite repression. Cold Spr. Harb. Symp. quant. Biol.26, 249–256 (1961)

    Google Scholar 

  • Makman, R., Sutherland, E. W.: Adenosine-3′,5′-phosphate inEscherichia coli. J. biol. Chem.240, 1309–1314 (1965)

    Google Scholar 

  • Monard, D., Janecek, J., Rickenberg, H. V.: Cyclic adenosine monophosphate diesterase activity and catabolite repression inEscherichia coli. Cold Spring Harbor Laboratory, Ed., p. 393–400 (1970)

  • Monod, J., Pappenheimer, A. M., Jr., Cohen-Bazire, G.: La cinétique de la biosynthèse de la β-galactosidase chezEscherichia coli, considérée comme fonction de la croissance. Biochim. biophys. Acta (Amst.)9, 648–660 (1952)

    Google Scholar 

  • Moses, V., Prevost, C.: Catabolite repression of β-galactosidase synthesis inEscherichia coli. Biochem. J.100, 336–353 (1966)

    Google Scholar 

  • Perlman, R. L., Pastan, I.: Cyclic 3′5′-AMP: Stimulation of β-galactosidase and tryptophanase induction inEscherichia coli. Biochem. biophys. Res. Commun.30, 656–664 (1968)

    Google Scholar 

  • Robinson, G., Butcher, R. W., Sutherland, E. W.: Cyclic AMP. New York-London: Academic Press 1971

    Google Scholar 

  • Stephenson, M., Gale, E. F.: Factors influencing bacterial deamination. The deamination of glycine,D-L alanine andL-glutamic acid byBacterium coli. Biochem. J.35, 1316–1322 (1937)

    Google Scholar 

  • Tao, M., Lipman, F.: Isolation of adenylcyclase fromEscherichia coli. Proc. nat. Acad. Sci. (Wash.)63, 86–92 (1969)

    Google Scholar 

  • Ulmann, A., Monod, J.: Cyclic AMP as an antagonist of catabolite repression inEscherichia coli. FEBS Letters2, 57–60 (1969)

    Google Scholar 

  • Zwaig, N., Kistler, W. S., Lin, E.C.C.: Glycerol kinase, the pacemaker for the dissimilation of glycerol inEscherichia coli. J. Bact.102, 753–759 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holms, W.H., Robertson, A.G. Control of derepressed β-galactosidase synthesis inEscherichia coli . Arch. Microbiol. 96, 21–35 (1974). https://doi.org/10.1007/BF00590160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00590160

Keywords

Navigation