Pflügers Archiv

, Volume 384, Issue 1, pp 69–73 | Cite as

Versatile piezoelectric driver for cell puncture

  • Michael Fromm
  • Paul Weskamp
  • Ulrich Hegel
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands


A simple and versatile tool facilitating micropuncture of small cells is described which utilizes a commercial piezoelectric element made from a stacked column of monomorph ceramic discs. The device is able to advance complete input stage-electrode-assemblies with high speed and can be used in combination with conventional micromanipulators. Advancing characteristics as recorded optically at high magnification demonstrated less axial vibration, although faster action, than two other modern micropositioners driven by step motors. In biological experiments on selected tissues (Necturus gallbladder epithelium, Amphiuma renal distal tubule cells, rabbit and human corneal endothelium) the combined use of micromanipulator and piezo-stepper was, in all cases, superior to the use of a micromanipulator alone: the percentage of successful cell penetrations increased, cell potentials were stable for a longer time, and the durability of electrode-tips improved.

Key words

Micropuncture technique Epithelial cells Intracellular impalement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmann, L.: Der Ultraschall und seine Anwendung in Wissenschaft und Technik, 6th ed., pp. 85ff. and 112. Stuttgart: Hirzel 1954Google Scholar
  2. 2.
    Brown, K. T., Flaming, D. G.: New microelectrode techniques for intracellular work in small cells. Neuroscience2, 813–827 (1977)Google Scholar
  3. 3.
    Connor, G. I.: Micropositioner in a close-loop control system. IEEE Transact. Biomed. Eng.20, 114–119 (1973)Google Scholar
  4. 4.
    Ellis, G. W.: Piezoelectric micromanipulators. Science138, 84–91 (1962)Google Scholar
  5. 5.
    Lassen, U. V., Sten-Knudsen, O.: Direct measurements of membrane potential and membrane resistance of human red cells. J. Physiol. (Lond.)195, 681–696 (1968)Google Scholar
  6. 6.
    Lassen, U. V., Rasmussen, B. E.: Membrane transport in biology, Ch. 5 of Vol. 1 (G. Giebisch, D. C. Tosteson, H. H. Ussing, eds.), p. 913. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  7. 7.
    Peters, M., Tetzel, H. D.: A high-speed piezoelectric microelectrode advancer. Pflügers Arch.379, R59, (1979)Google Scholar
  8. 8.
    Prazma, J.: Penetration of cells membrane by the piezoelectric driver. Experientia34, 1387 (1978)Google Scholar
  9. 9.
    Suzuki, K., Frömter, E.: The potential and resistance profile of necturus gallbladder cells. Pflügers Arch.371, 109–117 (1977)Google Scholar
  10. 10.
    Tupper, J. T., Rikmenspoel, R.: Piezoelectric device for glass microelectrodes. Rev. Sci. Instrum.40, 851–852 (1969)Google Scholar
  11. 11.
    Wiederholt, M., Koch, M.: Intracellular potentials of isolated rabbit and human corneal endothelium. Exp. Eye Res.27, 511–518 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Michael Fromm
    • 1
  • Paul Weskamp
    • 1
  • Ulrich Hegel
    • 1
  1. 1.Institut für Klinische PhysiologieFreie Universität BerlinBerlin 45

Personalised recommendations