Pflügers Archiv

, Volume 348, Issue 4, pp 305–316 | Cite as

Effect of intracellular tetraethylammonium ion on action potential in the guinea-pig's myocardium

  • R. Ochi
  • H. Nishiye


The membrane potential in guinea-pig's papillary muscles was recorded either by a sucrose-gap method or by an intracellular microelectrode. External application of tetraethylammonium ion (TEA) in a concentration of 20 mM did not induce any appreciable effect on the action potential. However, when TEA was applied to the inside of muscle fibers by diffusion from the cut end in the potential pool, action potentials elicited in normal Tyrode's after the healing-over were prolonged. The duration of the action potential at 90% repolarization increased by a factor of up to 1.6. The dose-response relationship suggests the formation of a complex between TEA and a receptor with a dissociation constant of 2 mM. Similar prolongations developped gradually when TEA was made to diffuse from the cut end in the current pool filled with 142 mM-TEA. In conclusion, TEA caused the prolongation of the action potential acting from the inside of the membrane in guinea-pig's myocardium. The prolongation induced by TEA suggests that outward potassium current accelerates the repolarization in the normal cardiac muscle.

Key words

Heart Muscle Action Potential Inside of Membrane Tetraethylammonium Ion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, C. M., Binstock, L.: Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. gen. Physiol.48, 859–872 (1965)Google Scholar
  2. Armstrong, C. M., Hille, B.: The inner quaternaty ammonium ion receptor in potassium channels of the node of Ranvier. J. gen. Physiol.59, 388–400 (1972)Google Scholar
  3. Aronson, R. S., Cranefield, P. F.: The electrical activity of canine, cardiac Purkinje fibers in sodium-free, calcium-rich solutions. J. gen. Physiol.61, 786–808 (1973)Google Scholar
  4. Barr, L., Dewey, M. M., Berger, W.: Propagation of action potentials and the structure of the nexus in cardiac muscle. J. gen. Physiol.48, 797–823 (1965)Google Scholar
  5. Beeler, G. W. Jr., Reuter, H.: Voltage clamp experiments on ventricular myocardial fibres. J. Physiol. (Lond.)207, 165–190 (1970)Google Scholar
  6. Bernard, C., Gargouïl, Y. M.: Acquisitions successives, chez l'embryon de rat, des perméabilites spécifiques de la membrane myocardique. C. R. Acad. Sci. (Paris)270, D 1495–1499 (1969)Google Scholar
  7. Chang, J. J., Schmidt, R. F.: Prolonged action potentials and regenerative hyperpolarizing responses in Purkinje fibers of mammalian heart. Pflügers Arch. ges. Physiol.272, 127–141 (1960)Google Scholar
  8. Coraboeuf, E., Vassort, G.: Effects of some inhibitors of ionic permeabilities on ventricular action potential and contraction of rat and guinea-pig hearts. J. Electrocardiol.1, 19–31 (1968)Google Scholar
  9. Délèze, J.: The recovery of resting potential and input resistance in sheep heart injured by knife or laser. J. Physiol. (Lond.)208, 547–562 (1970)Google Scholar
  10. De Mello, W. C., Motta, G. E., Chapeau, M.: A study on the healing-over of myocardial cells of toads. Circulat. Res.24, 475–487 (1969)Google Scholar
  11. Engelmann, T. W.: Vergleichende Untersuchungen zu der Lehre von der Muskelund Nervenelektrizität. Pflügers Arch.15, 116–148 (1877)Google Scholar
  12. Escobar, I., de Mello, W. C., Pérez, B.: Healing over and muscle contraction in toad hearts. Circulat. Res.26, 389–396 (1972)Google Scholar
  13. Giebisch, G., Weidmann, S.: Membrane currents in mammalian ventricular heart muscle fibers using a voltage-clamp technique. J. gen. Physiol.50, 290–296 (1971)Google Scholar
  14. Hagiwara, S., Saito, N.: Voltage current relations in nerve cell membrane of onchidium verraculatum. J. Physiol. (Lond.)148, 161–179 (1959)Google Scholar
  15. Hille, B.: The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J. gen. Physiol.50, 1287–1302 (1967)Google Scholar
  16. Johnson, E. A., Sommer, J. R.: A strand of cardiac muscle. Its ultrastructure and the electrophysiological implications of its geometry. J. Cell Biol.33, 103–129 (1967)Google Scholar
  17. Keynes, R. D., Rojas, E., Taylor, R. E., Vergas, J.: Calcium and potassium systems of a giant barnacle muscle fiber under membrane potential control. J. Physiol. (Lond.)229, 409–455, (1973)Google Scholar
  18. Koppenhöfer, E., Vogel, W.: Wirkung von Tetrodotoxin und Tetraäthylammoniumchlorid an der Innenseite der Schnürringsmembran von Xenopus laevis. Pflügers Arch.313, 361–389 (1969)Google Scholar
  19. Mascher, D., Peper, K.: Two components of inward current in myocardial muscle fibers. Pflügers Arch.307, 190–203 (1969)Google Scholar
  20. Ochi, R.: The slow inward current and the action of manganese ions in Guinea-Pig's myocardium. Pflügers Arch.316, 81–94 (1970)Google Scholar
  21. Ochi, R., Nishiye, H.: Temperature dependence of the healing-over in mammalian cardiac muscle. Proc. Japan Acad.49, 372–375 (1973)Google Scholar
  22. Ochi, R., Trautwein, W.: The dependence of cardiac contraction on depolarization and slow inward current. Pflügers Arch.323, 187–203 (1971)Google Scholar
  23. Robinson, R. A., Stokes, R. H.: Electrolyte solutions. London: Butterworths 1965Google Scholar
  24. Schmidt, H., Stämpfli, R.: Die Wirkung von Tetraethylammoniumchloride auf den einzelnen, Ranvierschen Schnürring. Pflügers Arch. ges. Physiol.287, 351–361 (1966)Google Scholar
  25. Tasaki., I., Hagiwara, S.: Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J. gen. Physiol.40, 859–885 (1957)Google Scholar
  26. Weidmann, S.: The diffusion, of radiopotassium across intercalated disks of mammalian cardiac muscle. J. Physiol. (Lond.)187, 323–342 (1966)Google Scholar
  27. Winergrad, S.: Studies of cardiac muscle with a high permeability to calcium produced by treatment with ethylenediaminetetraacetic acid. J. gen. Physiol.58, 71–93 (1971)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • R. Ochi
    • 1
    • 2
  • H. Nishiye
    • 1
    • 2
  1. 1.Department of PhysiologyJichi Medical SchoolTochigi-kenJapan
  2. 2.Department of Physiology, Faculty of MedicineUniversity of TokyoJapan

Personalised recommendations